NIST Special Publication 800-901	Style Definition [1
	Deleted: (Second DRAFT)
Recommendation for the Entropy Sources Used for Random Bi	t
Generation	1
	Formatted: Font: 14 pt
Meltem Sönmez Tura Elaine Barke John Kelse Kerry A. McKa Mary L. Bais Mike Boyl	r (Deleted: 1 y y h
This publication is available free of charge from <u>https://</u> doi.org/10.6028/NIST.SP. <u>800-901</u>	
	-

National Institute of Standards and Technology U.S. Department of Commerce **NIST Special Publication 800-90B**

Recommendation for the Entropy Sources Used for Random Bit Generation

Meltem Sönmez Turan Elaine Barker John Kelsey Kerry McKay Computer Security Division Information Technology Laboratory

> Mary L. Baish Mike Boyle National Security Agency Fort Meade, MD

Deleted: (Second DRAFT)

This publication is available free of charge from: <u>https://</u>doi.org/10.6028/NIST.SP.<u>800-90B</u>

 https://doi.org/10.6028/NIST.SP.800-90B
 Deleted: http://dx.

 Deleted: XXX

 January 2018

 Objected: XXX

 Deleted: 2016

 Objected: 2016

 Deleted: 2016

 <t

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § <u>3551</u> *et seq.*, Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-90B Natl. Inst. Stand. Technol. Spec. Publ. 800-90B, <u>84</u> pages (January <u>2018</u>) CODEN: NSPUE2

> This publication is available free of charge from: https://doi.org/10.6028/NIST.SP_800-90B

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement by the United States Government, nor does it imply that the products mentioned are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 Email: rbg_comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

Deleted: 3541 Deleted: 66 Deleted: 2016 Deleted: http://dx Deleted: XXX Deleted: Certain Deleted: entities, equipment Deleted: materials may be identified in this document in order Deleted: describe an experimental procedure or concept adequately. Such identification Deleted: intended to Deleted: NIST Deleted: is Deleted: intended to Deleted: entities, materials, or equipment Deleted: http Field Code Changed Deleted: Public comment period: January 25, 2016 through May 9, 2016 All comments are subject to release under the Freedom of Information Act (FOIA).

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in Federal information systems. The Special Publication 800-series reports on ITL's research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations.

Abstract

This Recommendation specifies the design principles and requirements for the entropy sources used by Random Bit Generators, and the tests for the validation of entropy sources. These entropy sources are intended to be combined with Deterministic Random Bit Generator mechanisms that are specified in SP 800-90A to construct Random Bit Generators, as specified in SP 800-90C.

Keywords

Conditioning functions; <u>entropy</u> source; health, testing; min-entropy; noise source; predictors; random number generators

Acknowledgements

The authors of this Recommendation gratefully acknowledge and appreciate contributions by their colleagues at NIST, Apostol Vassilev and Timothy A. Hall: and Aaron H. Kaufer and Darryl M. Buller of the National Security Agency for assistance in the development of this Recommendation. NIST also thanks the many contributions by the public and private sectors.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements of this Recommendation are indicated by the word "**shall**." Some of these requirements may be out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, implementing, installing or configuring applications that incorporate this Recommendation.

ii,

Deleted	: Entropy				
Deleted	testing; IID				
Deleted	l : ,				
Deletec	: also				
Deleted	!: ,				
Deleted	l:				
Deleted	l: ¶				

Note to Reviewers

To facilitate public review, we have compiled a number of open issues for which we would like reviewer input. Please keep in mind that it is not necessary to respond to all questions listed below, nor is review limited to these issues. Reviewers should also feel free to suggest other areas of revision or enhancement to the document as they see fit.⁴

Post-processing functions (Section 3.2.2): We provided a list of approved post-processing functions. Is the selection of the functions appropriate?

Entropy assessment (Section 3.1.5): While estimating the entropy for entropy sources using a conditioning component, the values of n and q are multiplied by the constant 0.85. Is the selection of this constant reasonable?

Multiple noise sources: The Recommendation only allows using multiple noise sources if the noise sources are independent. Should the use of dependent noise sources also be allowed, and how can we calculate an entropy assessment in this case?¶ *Health Tests:* What actions should be taken when health tests raise

Health Tests: What actions should be taken when health tests raise an alarm? The minimum allowed value of a type I error for health testing is selected as 2⁻⁵⁰. Is this selection reasonable?

Formatted: Centered

Formatted: Font color: Text 1

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-905

ST SP 800-90B		Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
	•	Formatted: Small caps
		Formatted: Numbering: Restart each page
Tabl	e of Contents	
Introduction	1	Deleted: 1-Introduction-11
		1.1-Scope-1 1.2-Symbols-2
<u>1.1 Scope</u>	1	1.3-Organization-4
1.2 Organization	2	2-General Discussion-4 2.1-Min-Entropy-4
1.3 Symbols	2	2.2→The Entropy Source Model-5¶
General Discussion		2.2.1-Noise Source-5¶ 2.2.2-Conditioning Component-6¶
		2.2.3 Health Tests 6¶ 2.3 Conceptual Interfaces 6¶
	4	2.3.1-GetEntropy: An Interface to the Entropy Source-6
2.2 The Entropy Source Model	5	2.3.2-GetNoise: An Interface to the Noise Source →7¶ 2.3.3-HealthTest: An Interface to the Entropy Source →7¶
2.2.1 Noise Source	5	3—Entropy Source Validation—9
		3.1→Validation Process→9¶ 3.1.1→Data Collection→9¶
	<u>ent</u> 6	3.1.2-Determining the track: IID track vs. non-IID track→1
2.2.3 Health Tests	6	3.1.3-Initial Entropy Estimate →12¶ 3.1.4-Restart Tests→12¶
2.3 Conceptual Interfaces	6	3.1.5 Entropy Estimation for Entropy Sources Using a
2.3.1 GetEntropy: An Interfa	ice to the Entropy Source6	Conditioning Component—14¶ 3.1.6 –Using Multiple Noise Sources—17¶
		3.2-Requirements for Validation Testing-18¶ 3.2.1-Requirements on the Entropy Source-18¶
2.3.2 CotNoise An Interface	e to the Noise Source7	3.2.2 – Requirements on the Noise Source –18¶
Z.J.Z Gennoise. An interface		3.2.2 Requirements on the Noise Source 18
	ce to the Entropy Source7	3.2.3-Requirements on the Conditioning Component-19
2.3.3 HealthTest: An Interfa	ce to the Entropy Source7	3.2.3—Requirements on the Conditioning Component—19 3.2.4—Requirements on Data Collection—20¶ 4—Health Tests—22¶
2.3.3 HealthTest: An Interfa Entropy Source Validation	ce to the Entropy Source7 9	3.2.3 - Requirements on the Conditioning Component
2.3.3 HealthTest: An Interfa Entropy Source Validation	ce to the Entropy Source7 9 9	3.2.3 - Requirements on the Conditioning Component
2.3.3 HealthTest: An Interfa Entropy Source Validation	ce to the Entropy Source7 9	3.2.3 - Requirements on the Conditioning Component
2.3.3 HealthTest: An Interfa Entropy Source Validation 3.1 Validation Process 3.1.1 Data Collection	ce to the Entropy Source 7	3.2.3 - Requirements on the Conditioning Component -19 3.2.4 - Requirements on Data Collection -20¶ 4 - Health Test -22¶ 4.1 - Health Test Overview -22¶ 4.2 - Types of Health Tests -22¶ 4.3 - Requirements for Health Tests -23¶ 4.4 - Approved Continuous Health Tests -25¶ 4.4.1 - Repetition Count Test -25¶ 4.4.2 - Adaptive Proportion Test -26¶
2.3.3 HealthTest: An Interfa Entropy Source Validation	ce to the Entropy Source 7 9 9 9 9 11D track vs. non-IID track 11	3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -20¶ 4 - Health Test -22¶ 4.1 - Health Test Overview -22¶ 4.2 - Types of Health Tests -22¶ 4.3 - Requirements for Health Tests -23¶ 4.4 - Approved Continuous Health Tests -25¶ 4.4.1 - Repetition Count Test -25¶ 4.4.2 - Adaptive Proportion Test -26¶ 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -27¶
2.3.3 HealthTest: An Interfation Entropy Source Validation 3.1 Validation Process 3.1.1 Data Collection 3.1.2 Determining the track: 3.1.3 Initial Entropy Estimate	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 12 12	 3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -20¶ 4 - Health Test -22¶ 4.1 - Health Test Overview -22¶ 4.2 - Types of Health Tests -22¶ 4.3 - Requirements for Health Tests -23¶ 4.4 - Approved Continuous Health Tests -25¶ 4.4.1 - Repetition Count Test -25¶ 4.4.2 - Adaptive Proportion Test -26¶ 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -27¶ 4.6 - Alternative Health Test Criteria -28¶
2.3.3 HealthTest: An Interfation Entropy Source Validation 3.1 Validation Process 3.1.1 Data Collection 3.1.2 Determining the track: 3.1.3 Initial Entropy Estimate	ce to the Entropy Source 7 9 9 9 9 11D track vs. non-IID track 11	3.2.3 - Requirements on the Conditioning Component -19 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 for Entropy Sources Using a Conditioning	3.2.3 - Requirements on the Conditioning Component -19 3.2.4 - Requirements on Data Collection -201 4 - Health Tests -221 4.1 - Health Tests -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -281
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 12 12	3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4.1 - Repetition Count Test -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1.2 - Number of Directional Runs -311 5.1.3 - Length of Directional Runs -311
2.3.3 HealthTest: An Interfation Entropy Source Validation 3.1 Validation Process 3.1.1 Data Collection 3.1.2 Determining the track: 3.1.3 Initial Entropy Estimate 3.1.4 Restart Tests 3.1.5 Entropy Estimation Component Component	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 for Entropy Sources Using a Conditioning 14	3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Tests -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests - 271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1.2 - Number of Directional Runs -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Increases and Decreases -321 5.1.5 - Number of Runs Based on the Median -321
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 12 12 for Entropy Sources Using a Conditioning 14 ces 17	 3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1 - Length of Directional Runs -311 5.1.3 - Length of Directional Runs -311 5.1.5 - Number of Runs Based on the Median -331 5.1.6 - Length of Runs Based on Median -331
2.3.3 HealthTest: An Interfation Entropy Source Validation 3.1 3.1 Validation Process 3.1.1 Data Collection 3.1.2 Determining the track: 3.1.3 Initial Entropy Estimated 3.1.4 Restart Tests 3.1.5 Entropy Estimation Component 3.1.6 Additional Noise Source 3.2	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 for Entropy Sources Using a Conditioning 14 ces 17 Testing 18	3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -20¶ 4 - Health Test -22¶ 4.1 - Health Test -22¶ 4.2 - Types of Health Tests -22¶ 4.3 - Requirements for Health Tests -23¶ 4.4 - Approved Continuous Health Tests -25¶ 4.4.1 - Repetition Count Test -25¶ 4.4.2 - Adaptive Proportion Test -26¶ 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -27¶ 4.6 - Alternative Health Test Criteria -28¶ 5 - Testing the IID Assumption -29¶ 5.1.1 - Excursion Test Statistic -31¶ 5.1.3 - Length of Directional Runs -31¶ 5.1.3 - Length of Directional Runs -31¶ 5.1.4 - Number of Directional Runs -31¶ 5.1.5 - Number of Runs Based on the Median -32¶ 5.1.6 - Length of Runs Based on the Median -33¶ 5.1.7 - Average Collision Test Statistic -33¶ 5.1.8 - Maximum Collision Test Statistic -34¶
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 12 12 for Entropy Sources Using a Conditioning 14 ces 17	3.2.3 - Requirements on the Conditioning Component -19 3.2.4 - Requirements on Data Collection -20 4 - Health Tests -22 4.1 - Health Test -22 4.2 - Types of Health Tests -22 4.2 - Types of Health Tests -22 4.3 - Requirements for Health Tests -23 4.4 - Approved Continuous Health Tests -25 4.4.1 - Repetition Count Test -26 4.4.2 - Adaptive Proportion Test -26 4.4.2 - Adaptive Proportion Test -26 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -27 4.6 - Alternative Health Test Criteria -28 5 - Testing the IID Assumption -29 5.1 - Permutation Test Grag -29 5.1.1 - Excursion Test Statistic -31 5.1.3 - Length of Directional Runs -31 5.1.4 - Number of Increases and Decreases -32 5.1.6 - Length of Runs Based on the Median -32 5.1.6 - Length of Runs Based on Median -33 5.1.7 - Average Collision Test Statistic -33
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 e 12 for Entropy Sources Using a Conditioning 14 ces 17 Testing 18	 3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Tests -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Critera -281 5 - Testing the IID Assumption -291 5.1.1 - Excursion Test Statistic -311 5.1.2 - Number of Directional Runs -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Increases and Decreases -321 5.1.5 - Number of Runs Based on the Median -331 5.1.7 - Average Collision Test Statistic -331 5.1.8 - Maximum Collision Test Statistic -331 5.1.9 - Periodicity Test Statistic -351 5.1.11 - Covariance Test Statistic -351 5.1.11 - Compression Test Statistic -351 5.1.11 - Compression Test Statistic -351
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11 9 12 12 12 12 12 12 12 12 14 14 ces 17 Testing 18 Entropy Source 18 Noise Source 18	 3.2.3 - Requirements on the Conditioning Component -191 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -221 4.4 - Approved Continuous Health Tests -251 4.4 - Approved Continuous Health Tests -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1 - Permutation Testing -291 5.1 - Excursion Test Statistic -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Increases and Decreases -321 5.1.5 - Number of Runs Based on the Median -321 5.1.6 - Length of Runs Based on the Median -331 5.1.7 - Average Collision Test Statistic -331 5.1.8 - Maximum Collision Test Statistic -331 5.1.9 - Periodicity Test Statistic -351 5.1.11 - Cowrainace Test Statistics -351 5.2 - Additional Chi-square Statistical Tests -351 5.2.1 - Testing Independence for Non-Binary Data -351
2.3.3 HealthTest: An Interfate Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 12 12 for Entropy Sources Using a Conditioning 14 ces 17 Testing 18 Entropy Source 18 Conditioning Component 19	 3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Tests -221 4.1 - Health Tests -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4.1 - Repetition Count Test -251 4.4.2 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Test Test -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Directional Runs -311 5.1.5 - Number of Runs Based on the Median -321 5.1.6 - Length of Runs Based on Median -331 5.1.7 - Average Collision Test Statistic -331 5.1.8 - Maximum Collision Test Statistic -331 5.1.1 - Corpression Test Statistic -351 5.2 - Additional Chi-square Statistical Tests -351 5.2 - Additional Chi-square Statistical Tests -351 5.2.1 - Testing Independence for Non-Binary Data -351 5.2.2 - Testing Goodness-of-fit for non-binary data -371
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11 9 12 12 12 12 12 12 12 12 14 14 ces 17 Testing 18 Entropy Source 18 Noise Source 18	 3.2.3 - Requirements on the Conditioning Component -19: 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -251 4.4 - Adaptive Proportion Test -261 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1 - Permutation Testing -291 5.1 - Excursion Test Statistic -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Increases and Decreases -321 5.1.6 - Length of Runs Based on the Median -321 5.1.6 - Length of Runs Based on the Median -321 5.1.7 - Average Collision Test Statistic -331 5.1.8 - Maximum Collision Test Statistic -331 5.1.9 - Periodicity Test Statistic -351 5.1.11 - Covariance Test Statistic -351 5.2 - Testing Independence for Non-Binary Data -351 5.2 - Testing Independence for Non-Binary Data -371 5.2 - Test
2.3.3 HealthTest: An Interfation Entropy Source Validation	ce to the Entropy Source 7 9 9 11D track vs. non-IID track 11 12 12 for Entropy Sources Using a Conditioning 14 ces 17 Testing 18 Entropy Source 18 Conditioning Component 19	 3.2.3 - Requirements on the Conditioning Component –19: 3.2.4 - Requirements on Data Collection –201 4 - Health Test ~221 4.1 - Health Test ~221 4.2 - Types of Health Tests –221 4.3 - Requirements for Health Tests –221 4.4 - Approved Continuous Health Tests –221 4.5 - Adaptive Proportion Test –221 4.6 - Alternative Health Test Criteria –281 5 - Testing the IID Assumption –291 5.1 - Permutation Testing –291 5.1 - Excursion Test Statistic –311 5.1.3 - Length of Directional Runs –311 5.1.4 - Number of Increases and Decreases –321 5.1.6 - Length of Runs Based on the Median –321 5.1.6 - Length of Runs Based on the Median –331 5.1.7 - Average Collision Test Statistic –331 5.1.8 - Maximum Collision Test Statistic –351 5.1.1 - Covariance Test Statistic –351 5.2 - Additional Chi-square Statistical Tests –351 5.2 - Testing Independence for Non-Binary Data –351 5.2 - Testing Independence for Non-Binary Data –371 5.2 - Testing Independence of Rinary Data –371 5.2 - Testing Independence for Rinary Data –371 5.2 - Testing Independence for Rinary Data –371 5.2 - Testing Independence of Rinary Data –371 5.2 - Testing Independence for Rinary Data
2.3.3 HealthTest: An Interfate Entropy Source Validation 3.1 3.1 Validation Process 3.1.1 Data Collection 3.1.2 Determining the track: 3.1.3 Initial Entropy Estimate 3.1.4 Restart Tests 3.1.5 Entropy Estimation Component 3.1.6 Additional Noise Source 3.2.1 Requirements for Validation 3.2.2 3.2.3 Requirements on the I 3.2.4 Requirements on Data Health Tests	ce to the Entropy Source 7 9 9 11 9 12 12 12 12 12 12 12 12 12 12 14 14 ces 17 Testing 18 Entropy Source 18 Noise Source 18 Conditioning Component 19 a Collection 20	 3.2.3 - Requirements on the Conditioning Component-19 3.2.4 - Requirements on Data Collection -201 4 - Health Test -221 4.1 - Health Test -221 4.2 - Types of Health Tests -221 4.3 - Requirements for Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.4 - Approved Continuous Health Tests -231 4.5 - Vendor-Defined Alternatives to the Continuous Health Tests -271 4.6 - Alternative Health Test Criteria -281 5 - Testing the IID Assumption -291 5.1 - Permutation Testing -291 5.1 - Permutation Test Statistic -311 5.1.3 - Length of Directional Runs -311 5.1.4 - Number of Increases and Decreases -321 5.1.6 - Length of Runs Based on the Median -321 5.1.6 - Length of Runs Based on Median -331 5.1.7 - Average Collision Test Statistic -341 5.1.9 - Periodicity Test Statistic -351 5.2 - Additional Chi-square Statistics -351 5.2 - Additional Chi-square Statistics -351 5.2 - Testing Independence for Non-Binary Data -371 5.3 - Testing Independence for Binary Data -371

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

ST SP 800-90B	
4.3 Requirements for Health Tests	23
4.4 Approved Continuous Health Te	<u>sts</u> 25
4.4.1 Repetition Count Test	
4.4.2 Adaptive Proportion Test.	
4.5 Developer-Defined Alternatives	to the Continuous Health Tests
Testing the IID Assumption	29
5.1 Permutation Testing	
5.1.1 Excursion Test Statistic	31
5.1.2 Number of Directional Ru	<u>ns</u> 31
5.1.3 Length of Directional Run	<u>s</u> 31
5.1.4 Number of Increases and	Decreases
5.1.5 Number of Runs Based of	n the Median32
5.1.6 Length of Runs Based on	Median
5.1.7 Average Collision Test St	atistic33
5.1.8 Maximum Collision Test S	statistic34
5.1.9 Periodicity Test Statistic	34
5.1.10 Covariance Test Statistic	35
5.1.11 Compression Test Statisti	<u>cs</u> 35
5.2 Additional Chi-square Statistical	Tests
5.2.1 Testing Independence for	Non-Binary Data
5.2.2 Testing Goodness-of-fit fo	r Non-Binary Data37
5.2.3 Testing Independence for	Binary Data
5.2.4 Testing Goodness-of-fit fo	r Binary Data38
5.2.5 Length of the Longest Rep	peated Substring Test39
Estimating Min-Entropy	40
6.1 IID Track: Entropy Estimation for	<u>IID Data</u> 40
6.2 Non-IID Track: Entropy Estimation	on for Non-IID Data40
6.3 Estimators	<u></u> 41
6.3.1 The Most Common Value	Estimate41
6.3.2 The Collision Estimate	42
6.3.3 The Markov Estimate	43
6.3.4 The Compression Estimat	<u>te</u> 45

(Deleted: (2 nd Draft)
~~(Formatted: Small caps
\sim	Formatted: Small caps

Formatted: Centered

Formatted: Font color: Text 1

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION	Deleted: (2 nd Draft)
A		 Formatted: Small caps
<u>6.3.6</u>	Longest Repeated Substring (LRS) Estimate	 (Formatted: Small caps
<u>6.3.7</u>	Multi Most Common in Window Prediction Estimate	
<u>6.3.8</u>	The Lag Prediction Estimate	
<u>6.3.9</u>	The MultiMMC Prediction Estimate	
<u>6.3.10</u>	The LZ78Y Prediction Estimate	
6.4 Reduc	ing the Symbol Space59	

List of Appendices

Appendix A— Acronyms	.61
Appendix B— Glossary	<u>62</u>
Appendix C— References	68
Appendix D— Min-Entropy and Optimum Guessing Attack Cost	70
Appendix E— The Narrowest Internal Width	73
Appendix F— CBC-MAC Specification	74
Appendix G— Different Strategies for Entropy Estimation	75
G.1 Entropic Statistics	.75
G.1.1 Approximation of F(1/z)	.75
G.2 Predictors	.76

v

-	Deleted: Appendix A— Acronyms—61
	Appendix B— Glossary-621
	Appendix C— References -681
	Appendix D— Min-Entropy and Optimum Guessing Attack
	Cost-70
	Appendix E— Post-processing Functions -721
	Appendix F— The Narrowest Internal Width 73
	Appendix G— CBC-MAC Specification –74
	Appendix H— Different Strategies for Entropy
	Estimation-75
	H.1-Entropic Statistics-75
	H.1.1 \rightarrow Approximation of F(1/z) \rightarrow 75
	H.2-Predictors →76¶

Formatted: Centered

Formatted: Font color: Text 1

I

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted: (2 nd Draft))
A	USED FOR RANDOM BIT GENERATION	 Formatted: Small caps)
		 Formatted: Small caps)

List of Figures

Figure 1 Entropy Source Model	<u></u> 5
Figure 2 Entropy Estimation Strategy	<u></u> 10
Figure 3 Entropy of the Conditioning Component	<u></u> 15
Figure 4 Generic Structure for Permutation Testing	<u></u> 29
Figure 5 Pseudo-code of the Fisher-Yates Shuffle	<u></u> 30

List of Tables

vi

Table 1 The narrowest internal width and output lengths of the vetted conditioning	
functions	lengths of the vet Table 2 Adaptive
Table 2 Example cutoff values of the Adaptive Proportion Test	entropy/sample le Table 3 Adaptive
Table 3 Plocal values for different r values when L=1 000 000	various entropy/s

Deleted: Table 1 The narrowest internal width and output lengths of the vetted conditioning functions. $\neg 16 \$ Table 2 Adaptive proportion test on binary data for various entropy/sample levels with $W=1024-27 \$ Table 3 Adaptive proportion test on non-binary data for various entropy/sample levels with $W=512-27 \$

Deleted: Figure 1 Entropy Source Model—5¶ Figure 2 Entropy Estimation Strategy—9¶ Figure 3 Entropy of the Conditioning Component—15¶ Figure 4 Generic Structure of Permutation Testing—29¶ Figure 5 Pseudo-code of the Fisher-Yates Shuffle—30¶

Formatted: Centered

Formatted: Font color: Text 1

I

I

Scope

Introduction

Module Validation Program (CMVP).

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Deleted: (2 nd Draft)
Formatted: Small caps
Formatted: Small caps

Deleted: Deterministic Random Bit Generator (DRBG)

An entropy source that conforms to this Recommendation can be used by RBGs to produce a sequence of random bits. The outputs of entropy sources should contain a sufficient amount of randomness to provide security. This Recommendation describes the properties that an entropy source must have to make it suitable for use by cryptographic random bit generators, as well as the tests used to validate the quality of the entropy source,

cryptography. The NIST Special Publication (SP) 800-90 series of Recommendations provides guidance on the construction and validation of Random Bit Generators (RBGs) in the form of Deterministic Random Bit Generators (DRBGs) (also known as pseudorandom number generators) or Non-deterministic Random Bit Generators (NRBGs) that can be used for cryptographic applications. This Recommendation specifies how to design and test entropy sources that can be used by these RBGs. SP 800-90A addresses the construction of approved

DRBG mechanisms, while SP 800-90C addresses the construction of RBGs from the mechanisms

in SP 800-90A and the entropy sources in SP 800-90B. These Recommendations provide a basis for validation by NIST's Cryptographic Algorithm Validation Program (CAVP) and Cryptographic

The development of entropy sources that construct unpredictable outputs is difficult, and providing guidance for their design and validation testing is even more so. The testing approach defined in this Recommendation assumes that the developer understands the behavior of the source of randomness within the entropy source and has made a good-faith effort to produce an entropy source suitable for cryptographic applications (e.g., produces bitstrings that can provide entropy at a rate that meets (or exceeds) a specified value). It is expected that, over time, improvements to the guidance and testing will be made, based on experience in using and validating against this Recommendation.

This Recommendation is intended for use by entropy source developers (the entity that designs and builds the entropy source or a portion thereof), submitters¹ (the entity that submits the entropy source for validation testing), NVLAP-accredited laboratories that validate entropy sources and any entity with an interest in having an entropy source validated.

This Recommendation was developed in concert with American National Standard (ANS) X9.82, a multi-part standard on random number generation.

¹ The submitter may or may not be a developer; if the submitter is not the developer then the submitter may need to acquire required information from the developer before submission or during validation testing.

Deleted: While there has been extensive research on the subject of generating pseudorandom bits using a DRBG and an unknown seed value, creating such an unknown seed has not been as well documented. The only way for this seed value to provide real security is for it to contain a sufficient amount of randomness, e.g., from a non-deterministic process referred to as an entropy source Deleted:

Deleted: noise	
Deleted: a consistent	
Deleted: of entropy.	

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
.	USED FOR RANDOM BIT GENERATION		Formatted: Small caps
1.2 Organization		(Formatted: Small caps
		(Moved (insertion) [1]

Section 2 gives a general discussion on min-entropy, the entropy source model and the conceptual interfaces. Section 3 explains the validation process and lists the requirements on the entropy source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes various statistical tests to check whether or not the entropy source outputs are IID (independent and identically distributed). Section 6 provides several methods to estimate the entropy of the noise source. The appendices include a list of acronyms, a glossary, references, a discussion on minentropy and the optimum-guessing-attack cost, information about the narrowest internal width, Cipher Block Chaining - Message Authentication Code (CBC-MAC) specification, and the underlying information on different entropy estimation strategies used in this Recommendation.

1.3 Symbols

The following symbols and functions are used in this Recommendation.

	The <u>alphabet</u> , i.e., the set of all possible <u>symbols that</u> a <u>(digitized)</u> noise	Deleted: distinct sample outputs from
$A = \{x_1, x_2, \dots, x_k\}_{\blacktriangle}$	source, produces.	Formatted: Font: Not Italic
Н	The min-entropy of the samples from a (digitized) noise source or of the output from an entropy source; the min-entropy assessment for a noise source or entropy source.	Deleted: , i.e. the alphabet.
H_I	Initial entropy estimate.	
<u>Horiginal</u>	Entropy estimate of the sequential dataset	
<u>H_{submiter}</u>	The entropy estimate provided by the submitter.	
L	The number of samples.	
$\log_b(x)$	The logarithm of x with respect to base b .	
<u>ln(x)</u>	The natural logarithm.	
<u>min(<i>a</i>, <i>b</i>)</u>	A function that returns the minimum of the two values <i>a</i> and <i>b</i> .	
$\max(a, b)$	A function that returns the maximum of the two values <i>a</i> and <i>b</i> .	
<u>M[i][j]</u>	The <i>j</i> th sample from the <i>i</i> th restart of the noise source.	
<u>n</u>	<u>The length of x_i in bits.</u>	
nw	Narrowest width of the conditioning component	

IIST SP 800-90B		Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
k	The number of possible <u>symbols</u> , i.e., the size of the alphabet.	Formatted: Small caps
		Deleted: sample values
α	The probability of falsely rejecting the null hypothesis (type I error).	
a	A function that returns the absolute value of <i>a</i> .	
p_i	The probability for an observation (or occurrence) of the <u>symbol</u> x_i in A .	Deleted: sample value
<i>p_{max}</i>	The probability of observing the most common <u>symbol</u> from a noise source.	- (Deleted: sample
$S=(s_1,\ldots,s_L)$	A dataset that consists of an ordered collection of <u><i>L</i></u> samples, where $s_i \in A$.	
x_i	A possible output from the (digitized) noise source.	
[<i>a</i> ,_ <i>b</i>]	The interval of numbers between <i>a</i> and <i>b</i> , including <i>a</i> and <i>b</i> .	
$\lceil x \rceil$	A function that returns the smallest integer greater than or equal to <i>x</i> ; also known as the <i>ceiling</i> function.	
$\lfloor x \rfloor$	A function that returns the largest integer less than or equal to x ; also known as the <i>floor</i> function.	
	Concatenation.	
$ \oplus $	Bit-wise exclusive-or operation.	

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

General Discussion

The three main components of a cryptographic RBG are a source of random bits (an entropy source), an algorithm for accumulating and providing random bits to the consuming applications, and a way to combine the first two components appropriately for cryptographic applications. This Recommendation describes how to design and test entropy sources. SP 800-90A describes deterministic algorithms that take an entropy input and use it to produce pseudorandom values. SP 800-90C provides the "glue" for putting the entropy source together with the algorithm to implement an RBG.

Specifying an entropy source is a complicated matter. This is partly due to confusion in the meaning of entropy, and partly due to the fact that, while other parts of an RBG design are strictly algorithmic, entropy sources depend on physical processes that may vary from one instance of a source to another. This section discusses, in detail, both the entropy source model and the meaning of entropy.

2.1 Min-Entropy

The central mathematical concept underlying this Recommendation is *entropy*. Entropy is defined relative to one's knowledge of an experiment's output prior to observation, and reflects the uncertainty associated with predicting its value – the larger the amount of entropy, the greater the uncertainty in predicting the value of an observation. There are many possible <u>measures for</u> entropy; this Recommendation uses a very conservative measure known as *min-entropy*, which measures the <u>effectiveness of the strategy</u> of guessing the most likely output of the entropy source. (see Appendix D and [Cac97] for more information).

In cryptography, the unpredictability of secret values (such as cryptographic keys) is essential. The probability that a secret is guessed correctly in the first trial is related to the min-entropy of the distribution that the secret was generated from. \mathbf{v}

The min-entropy of an independent discrete random variable *X* that takes values from the set $A = \{x_1, x_2, ..., x_k\}$ with probability $Pr(X=x_i) = p_i$ for i = 1, ..., k is defined as

 $H = \min_{1 \le i \le k} (-\log_2 p_i),$

 $= -\log_2 \max_{1 \le i \le k} p_i.$

If X has min-entropy H, then the probability of observing any particular value for X is no greater than 2_{v}^{-H} . The maximum possible value for the min-entropy of a random variable with k distinct values is $\log_2 k$, which is attained when the random variable has a uniform probability distribution, i.e., $p_1 = p_2 = ... = p_k = 1/k$.

Deleted: (2 nd Draft)
Formatted: Small caps
Formatted: Small caps
Moved up [1]: <#>Organization

Deleted: *4**>Section 2 gives a general discussion on minentropy, the entropy source model and the conceptual interfaces. Section 3 explains the validation process and lists the requirements on the entropy source, data collection, documentation, etc. Section 4 describes the health tests. Section 5 includes various statistical tests to check whether the entropy source outputs are IID (independent and identically distributed) or not. Section 6 provides several methods to estimate the entropy of the noise source. The appendices include a list of acronyms, a glossary, references, a discussion on min-entropy and the optimum guessing attack cost, descriptions of the post-processing functions, information about the narrowest internal width and the underlying information on different entropy estimation strategies used in this Recommendation.

Deleted: the

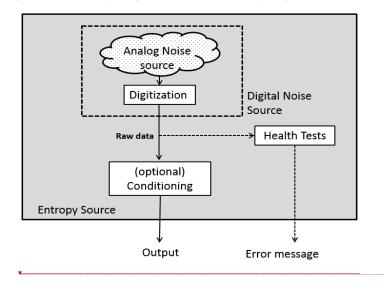
Deleted: the

Deleted: types of

Deleted: difficulty

Deleted: The min-entropy is closely related to the negative

logarithm of the maximum probability using the optimal guessing strategy [Cac97] (see Appendix D for more information).

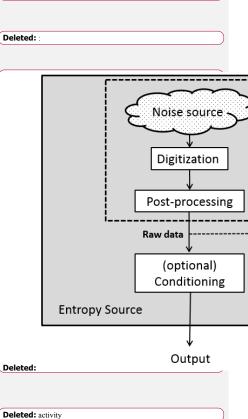

 $\left(\text{Deleted: } H = -\min_{1 \le i \le k} (-\log_2 p_i) \right)$


Deleted:

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted: (2 nd Draft)	$\overline{)}$
A	USED FOR RANDOM BIT GENERATION	 Formatted: Small caps	\mathbf{k}

2.2 The Entropy Source Model

This section describes the entropy source model in detail. Figure 1 illustrates the model that this Recommendation uses to describe an entropy source and its components, which consist of a noise source, an optional conditioning component and a health testing component.


2.2.1 Noise Source

The noise source is the root of security for the entropy source and for the RBG as a whole. This is the component that contains the non-deterministic, entropy-providing <u>process</u> that is ultimately responsible for the uncertainty associated with the bitstrings output by the entropy source.

If the non-deterministic activity being sampled produces something other than binary data, the sampling process includes a *digitization* process that converts the output samples to bits. <u>The output of the digitized</u> noise source is called the *raw data*.

This Recommendation assumes that the sample values (i.e., the symbols) obtained from a noise source consist of fixed-length bitstrings.

Noise sources can be divided into two categories: *Physical noise sources* use dedicated hardware to generate randomness; whereas *Non-physical noise sources* use system data (such as output of Application Programming Interface (API) functions, Random Access Memory (RAM) data or system time) or human input (e.g., mouse movements) to generate randomness.

eleced: activity

Formatted: Small caps

Deleted: The noise sourse may also include some simple *post-processing operations* that can reduce the statistical biases of the samples and increase the entropy rate of the resulting output. The output of the digitized and optionally post-processed

NIST	SP	800-	-90B
------	----	------	------

RECOMMENDATION FOR THE ENTROPY SOURCES Used FOR RANDOM BIT GENERATION

If the noise source fails to generate random outputs, no other component in the RBG can compensate for the lack of entropy; hence, no security guarantees can be made for the application relying on the RBG.

2.2.2 Conditioning Component

The optional conditioning component is a deterministic function responsible for reducing bias
and/or increasing the entropy rate of the resulting output bits (if necessary to obtain a target value).
There are various methods for achieving this. The developer should consider how the conditioning
component to be used and how variations in the behavior of the noise source may affect the entropy
ate of the output. In choosing an approach to implement, the developer may either choose to
mplement a cryptographic algorithm listed in Section 3.1.5.1.1 or use an alternative algorithm as
a conditioning component. The use of either of these approaches is permitted by this
Recommendation.

2.2.3 Health Tests

Health tests are an integral part of the entropy source design that are intended to ensure that the noise source and the entire entropy source continue to operate as expected. When testing the entropy source, the end goal is to obtain assurance that failures of the entropy source are caught quickly and with a high probability. Another aspect of health testing strategy is determining the likely failure modes for the entropy source and, in particular, for the noise source. Health tests are expected to include tests that can detect these failure conditions.

The health tests can be separated into three categories: *start-up tests*, *continuous tests* (primarily on the noise source), and *on-demand tests*, (See Section 4 for more information).

2.3 Conceptual Interfaces

This section describes three conceptual interfaces that can be used to interact with the entropy source: **GetEntropy**, **GetNoise** and **HealthTest**. However, it is anticipated that the actual interfaces used may depend on the entropy source employed.

These interfaces can be used when constructing an RBG as specified in SP 800-90C.

2.3.1 GetEntropy: An Interface to the Entropy Source

The **GetEntropy** interface can be considered to be a command interface into the outer entropy source box in Figure 1. This interface is meant to indicate the types of requests for services that an entropy source may support.

A **GetEntropy** call could return a bitstring containing the requested amount of entropy, along with an indication of the status of the request. Optionally, an assessment of the entropy can be provided. Note that the length of the returned bitstring may be greater than the amount of entropy requested.

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Deleted:

Deleted: In situations where a single noise source does not provide sufficient entropy in a reasonable amount of time, outputs from multiple noise sources may be combined to obtain the necessary amount of entropy. When multiple noise sources are used, the relationship between sources affects the entropy of the outputs. If the noise sources are independent, their entropy assessments can be added. Thermal noise and mouse movements can be given as examples of independent noise sources (i.e., the output of the noise sources, such as the ones based on dependent processes (e.g., packet arrival times in a communication network and hard drive access times), the total entropy produced is harder to estimate. This Recommendation only considers the use of independent noise sources.

Deleted: by a developer

Deleted: (on all components),

Deleted:

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
GetEntropy		Formatted: Small caps
Input:		
<i>bits of entropy</i> : the requested amount	of entropy	
Output:		
<i>entropy bitstring</i> : The string that provi	des the requested entropy.	
	f the request has been satisfied, and is FALSE otherwise.	
2.3.2 GetNoise: An Interface to th	e Noise Source	
	ered to be a command interface into the noise source	
	uld be used to obtain raw, digitized outputs from the noise or external health (i.e., testing performed external to the	Deleted: and optionally post-processed Deleted: tests.
	ed to be in this form, it is expected that an interface be	Deleted: lesis.
	to be obtained without harm to the entropy source. This	
	to credit a noise source with an entropy estimate during	
	It is permitted that such an interface <u>be</u> available only in	Deleted: is
"test mode" and that it is disabled when	the source is operational.	
This interface is not intended to constrain notation to describe the data collection find	n real-world implementations, but to provide a consistent rom noise sources.	
A GetNoise call returns raw, digitized so the status of the request.	amples from the noise source, along with an indication of	Deleted: ,
GetNoise		
Input:		
	eger value that indicates the requested number of samples	
to be returned from the noise source.		
Output:		
noise_source_data: The sequence of number_of_samples_requested.	of samples from the noise source with <u>a length of</u>	
status: A Boolean value that is TRUE i	f the request has been satisfied, and is FALSE otherwise.	
2.3.3 HealthTest: An Interface to	the Entropy Source	Deleted: 1
A HealthTest call is a request to the entr	ropy source to conduct a test of its health. Note that it may	

A **HealthTest** call is a request to the entropy source to conduct a test of its health. Note that it may not be necessary to include a separate **HealthTest** interface if the execution of the tests can be initiated in another manner that is acceptable to FIPS 140 [FIPS140] validation.

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Deleted: (2nd Draft) Formatted: Small caps Formatted: Small caps

HealthTest

Input:

type_of_test_requested: A bitstring that indicates the type or suite of tests to be performed (this may vary from one entropy source to another).

Output:

status: A Boolean value that is TRUE if the entropy source passed the requested test, and is FALSE otherwise.

NIST	SP	800	-90	IR ⁴

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

8 Entropy Source Validation

Entropy source validation is necessary in order to obtain assurance that all relevant requirements of this Recommendation are met. This Recommendation provides requirements for validating an entropy source at a stated entropy rate. Validation consists of testing by an NVLAP-accredited laboratory against the requirements of SP 800-90B, followed by a review of the results by CAVP and CMVP. Validation provides additional assurance that adequate entropy is provided by the source and may be necessary to satisfy some legal restrictions, policies, and/or directives of various organizations.

The validation of an entropy source presents many challenges. No other part of an RBG is so dependent on the technological and environmental details of an implementation. At the same time, the proper operation of the entropy source is essential to the security of an RBG. The developer should make every effort to design an entropy source that can be shown to serve as a consistent source of entropy, producing bitstrings that can provide entropy at a rate that meets (or exceeds) a specified value. In order to design an entropy source that provides an adequate amount of entropy per output bitstring, the developer must be able to accurately estimate the amount of entropy that can be provided by sampling its (digitized) noise source. The developer must also understand the behavior of the other components included in the entropy source, since the interactions between the various components may affect any assessment of the entropy that can be provided by an implementation of the design. For example, if it is known that the raw noise-source output is biased, appropriate conditioning components can be included in the design to reduce the bias of the entropy source output to a tolerable level before any bits are output from the entropy source.

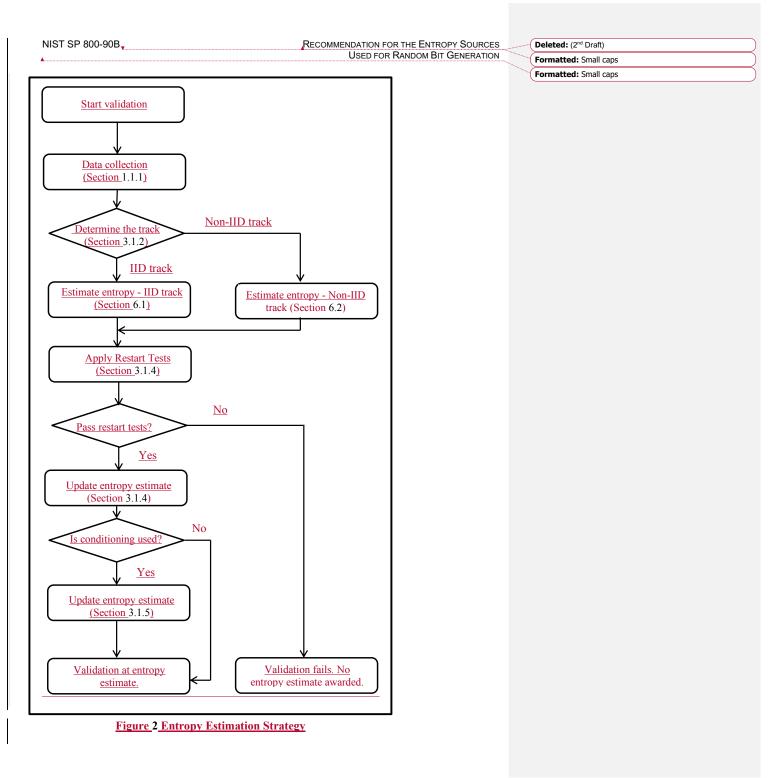
3.1 Validation Process

An entropy source may be submitted to an accredited lab for validation testing by the developer or any entity with an interest in having an entropy source validated. After the entropy source is submitted for validation, the <u>lab</u> will examine all documentation and theoretical justifications submitted. The <u>lab</u> will evaluate these claims, and may ask for more evidence or clarification.

The general flow of entropy source validation testing is summarized in <u>Figure 2</u>. The following sections describe the details of the validation testing process.

3.1.1 Data Collection

The submitter provides the following inputs for entropy estimation, according to the requirements presented in Section 1.1.1.


(Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Deleted: and guidance that will allow	
Deleted: to be validated for an	
Deleted: assessment that will provide evidence that the entropy source produces bitstrings providing entropy at a specified	
Deleted: NIST's	

Deleted: that

Deleted: labs
Deleted: labs

Moved down [2]: ¶ ¶ <i>sobject><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object><object<object><object><object><object><object><objec< i=""></objec<></object></object></object></object></object<object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></object></i>	
Deleted: <object><object></object></object>	[4]
(Moved (insertion) [2]	

 (i.e., raw da samples is r (generated u samples. The If the entrop a conditione outputs shal concatenated purposes. No to the conditioned 	dataset of at least 1,000,000, sam (a) shall be collected for validat not possible, the concatenation (sing the same noise source) is a e concatenated dataset shall contra- y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. The in the order in which it was get out the the data collected from the	ple values obtained directly fr ion_ ² . If the generation of 1_00 of several smaller sets of co allowed. Smaller sets shall co tain at least 1_000_000 samples component that is not listed i 1_000_000 consecutive condi	00,000 consecutive onsecutive samples ontain at least 1000 s. n Section 3.1.5.1.1,		Formatted: Small caps Formatted: Small caps Deleted: , Deleted: , Deleted: consecutive Deleted: samples Deleted: ,
 (i.e., raw da samples is r (generated u samples. The If the entrop a conditione outputs shal concatenated purposes. No to the conditioned 	ta) shall be collected for validat not possible, the concatenation sing the same <u>noise source</u>) is a e concatenated dataset shall cont y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. The in the order in which it was get	ion ² . If the generation of 1,00 of several smaller sets of co allowed. Smaller sets shall co tain at least 1,000,000 samples component that is not listed i 1,000,000 consecutive condi	00,000 consecutive onsecutive samples ontain at least 1000 s. n Section 3.1.5.1.1,		Deleted: , Deleted: , Deleted: consecutive Deleted: samples
 (i.e., raw da samples is r (generated u samples. The If the entrop a conditione outputs shal concatenated purposes. No to the conditioned 	ta) shall be collected for validat not possible, the concatenation sing the same <u>noise source</u>) is a e concatenated dataset shall cont y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. The in the order in which it was get	ion ² . If the generation of 1,00 of several smaller sets of co allowed. Smaller sets shall co tain at least 1,000,000 samples component that is not listed i 1,000,000 consecutive condi	00,000 consecutive onsecutive samples ontain at least 1000 s. n Section 3.1.5.1.1,		Deleted: , Deleted: consecutive Deleted: samples
samples is 1 (generated u samples. The If the entrop a <i>conditione</i> <u>outputs</u> shal <u>concatenatec</u> purposes. No to the condit	not possible, the concatenation sing the same <u>noise source</u>) is a e concatenated dataset shall cont y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. The in the order in which it was ge	of several smaller sets of cc allowed. Smaller sets shall cc tain at least 1,000,000 samples component that is not listed i 1,000,000 consecutive condi	onsecutive samples ontain at least <u>1000</u> s.		Deleted: consecutive Deleted: samples
(generated u samples. The If the entrop a <i>conditione</i> <u>outputs</u> shal <u>concatenatec</u> purposes. No to the condit	sing the same <u>noise source</u>) is a e concatenated dataset shall cont y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. The in the order in which it was ge	allowed. Smaller sets shall co tain at least 1,000,000 samples component that is not listed i 1,000,000 consecutive condi	ontain at least <u>1000</u> s.		Deleted: samples
samples. The If the entrop a <i>conditione</i> <u>outputs</u> shal <u>concatenatec</u> purposes. No to the condit	e concatenated dataset shall cont y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. Th I in the order in which it was ge	tain at least 1,000,000 samples component that is not listed i 1,000,000 consecutive condi	s., n Section 3.1.5.1.1,		
P. If the entrop a conditione outputs shal concatenated purposes. No to the conditional	y source includes a conditioning <i>d sequential</i> dataset of at least I be collected for validation. Th I in the order in which it was ge	component that is not listed i 1,000,000 consecutive condi	n Section 3.1.5.1.1,	$\langle \rangle \rangle \langle \rangle$	Deleted: ,
a <i>conditione</i> <u>outputs</u> shal <u>concatenated</u> purposes. No to the condit	<i>d sequential</i> dataset of at least I be collected for validation. Th <u>I in the order in which it was ge</u>	1,000,000 consecutive condi		2 11 1	
outputs shal concatenated purposes. No to the condit	I be collected for validation. The lin the order in which it was get		· · · · · · · · · · · · · · · · · · ·	∭ / / X	Deleted: ,
concatenated purposes. No to the condit	in the order in which it was ge			, ////	Deleted: device
purposes. No to the condit					Deleted: 1,000
to the condit					Deleted: ,
	ioning component for the collec				Deleted: ,
. FOI the resta	art tests (see Section 3.1.4), the	-			Deleted: If multiple noise sources are used, a dataset of at least 1,000,000 samples from each noise source shall be collected.
	1000 consecutive samples shall				Deleted:
	hall be extracted whenever the r			$\langle \rangle$	Deleted:
can be used	for producing entropy source o	utput. This data is stored in a		$\langle \rangle$	Deleted: samples values obtained as the output of the
matrix M, w	here $M[i][j]$ represents the j^{th} sar	nple from the <i>i</i> th restart.			Deleted: This data is stored in a 1000x1000
		-			Formatted: Superscript
×					Formatted: Superscript
.1.2 Determining the track: IID track vs. non-IID track a this Recommendation, entropy estimation is done using two different tracks: an IID-track and a on-IID track. The <i>IID-track</i> (see Section 6.1) is used for entropy sources that generate IID independent and identically distributed) samples, whereas the <i>non-IID track</i> (see Section 6.2) is			Deleted: <#>If multiple noise sources are used, sequential and restart datasets from each noise source shall be collected, as specified in item 1. If a conditioning component that is not listed i		
and for noise of		es, whereas the <i>non-IID track</i>	•		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source.¶
The track select	ources that do not generate IID s ion is done based on the followi	es, whereas the <i>non-IID track</i> amples.	(see Section 6.2) is		Section 3.1.5.1.1 is used, a single conditioned dataset shall be
The track select all of the follow 1. The sub	burces that do not generate IID s ion is done based on the following ing conditions are satisfied: nitter makes an IID claim on th	s, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u>	(see Section 6.2) is be <u>used</u> only when		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source.¶ Deleted: According to
The track select all of the follow 1. The subro of the de	burces that do not generate IID s ion is done based on the following ing conditions are satisfied: nitter makes an IID claim on th sign. The submitter shall provid	s, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u> e rationale for the IID claim.	(see Section 6.2) is be <u>used</u> only when submitter's analysis		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source." Deleted: According to Deleted: chosen
The track select all of the follow 1. The sub- of the de 2. The sequ tests dese	burces that do not generate IID s ion is done based on the following conditions are satisfied: nitter makes an IID claim on th sign. The submitter shall provid uential dataset described in item cribed in Section 5 to verify the I	s, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u> e rationale for the IID claim. 1 of Section 1.1.1 is tested of ID assumption, and the IID ass	(see Section 6.2) is be <u>used</u> only when submitter's analysis using the statistical		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source." Deleted: According to Deleted: chosen
The track select all of the follow 1. The sub- of the de 2. The sequ tests dese	burces that do not generate IID s ion is done based on the following ing conditions are satisfied: nitter makes an IID claim on the sign. The submitter shall provid uential dataset described in item	s, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u> e rationale for the IID claim. 1 of Section 1.1.1 is tested of ID assumption, and the IID ass	(see Section 6.2) is be <u>used</u> only when submitter's analysis using the statistical		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source. ⁴ Deleted: According to Deleted: chosen Deleted: his
The track select all of the follow 1. The sub- of the de 2. The sequ tests deso (i.e., the	burces that do not generate IID s ion is done based on the following conditions are satisfied: mitter makes an IID claim on the sign. The submitter shall providuential dataset described in item cribed in Section <u>5</u> to verify the I re is no evidence that <u>the</u> data is	s, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u> e rationale for the IID claim. 1 of Section 1.1.1 is tested of ID assumption, and the IID assinot IID).	(see Section 6.2) is be <u>used only when</u> submitter's analysis using the statistical sumption is verified		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source. ⁴ Deleted: According to Deleted: chosen Deleted: his
 The track select all of the follow The subion of the de The sequence of the sequence of	burces that do not generate IID s ion is done based on the following conditions are satisfied: nitter makes an IID claim on th sign. The submitter shall provid uential dataset described in item cribed in Section 5 to verify the I	es, whereas the <i>non-IID track</i> amples. ing rules. The IID track shall e noise source, based on <u>the s</u> e rationale for the IID claim. 1 of Section 1.1.1 is tested of ID assumption, and the IID ass not IID).	(see Section 6.2) is be <u>used only when</u> <u>submitter's analysis</u> using the statistical sumption is verified are tested using the		Section 3.1.5.1.1 is used, a single conditioned dataset shall be collected as an output of the entropy source. ⁴ Deleted: According to Deleted: chosen Deleted: his Deleted: 5

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

4. If a conditioning component that <u>is</u> not listed in Section 3.1.5.1.1 is used, the conditioned sequential dataset <u>(described in item 2 of Section 1.1.1)</u> is tested using the statistical tests described in Section 5 to verify the IID assumption, and the IID assumption is verified.

If any of these conditions are not met, the estimation process shall follow the non-IID track.

3.1.3 Initial Entropy Estimate

The submitter **shall** provide an entropy estimate for the noise source outputs, which is based on the submitter's analysis of the noise source (see Requirement 3 in Section 3.2.2). This estimate is denoted as $H_{submitters}$.

After determining the entropy estimation track, a min-entropy estimate per sample, denoted as $H_{ortginal}$, for the *sequential dataset* is calculated using the methods described in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track). If the <u>alphabet</u> size is greater than 256, it **shall** be reduced to at most 256 symbols (see Section 6.4).

If the sequential dataset is not binary, an additional entropy estimation (per bit), denoted $H_{bitstring}$, is <u>estimated</u>. First, the sequential dataset <u>that contains L samples</u> (each having n bits) is considered as a bitstring of size nL. The bits after the first 1,000,000 bits may be ignored. Then, the estimation is done based on the entropy estimation track, as specified in the previous paragraph, and $H_{bitstring}$ is calculated. Then, the entropy per sample is estimated to be $n \times H_{bitstring}$.

The initial entropy estimate of the noise source is calculated as $H_I = \min(H_{original}, n \times H_{bitstring}, H_{submitter})$ for non-binary sources and as $H_I = \min(H_{original}, H_{submitter})$ for binary sources.

3.1.4 Restart Tests

The entropy estimate of a noise source, calculated from a single, long-output sequence, might provide an overestimate if the noise source generates correlated sequences after restarts. Hence, an attacker with access to multiple noise source output sequences after restarts may be able to predict the next output sequence with much better success than the entropy estimate suggests

The process of restarting a noise source may be different for different noise sources (e.g., powering off, cooling off, delaying ten seconds before extracting output from the noise source, etc.). The submitter **shall** define the restart process suitable for the submission. This process **shall** simulate the restart process expected in real-world use (e.g., the outputs are not generated until after the start-up tests are complete; see Section 4.2). All restarts are expected to be done in normal operating conditions.

The restart tests described in this section re-evaluate the entropy estimate for the noise source using different outputs from many restarts of the noise source. These tests are designed to ensure that:

- The noise source outputs generated after a restart are drawn from the same distribution as every other output.
- The distribution of samples in a restart sequence is independent of its position in the restart sequence.

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Deleted: 5

Moved (insertion) [3]

Deleted: of the sample space
Deleted: , using the method described in
Deleted:
Deleted: (i.e., the size of the sample space <i>k</i> is more than 2),
Deleted: determined (based on the entropy estimation track, as specified in the previous paragraph), considering
Deleted:
Deleted: ,
Deleted: ,
Deleted: The
Deleted: where <i>n</i> is the size of the fixed-length samples.
Deleted: The submitter shall provide an entropy estimate for the noise source, which is based on the submitter's analysis of the noise source (see Requirement 8 in Section 3.2.2).

loved up	[3]: This	estimate is	denoted as	Hsubmitter.
----------	-----------	-------------	------------	-------------

Deleted:	
----------	--

Deleted: source.

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
	Used for Random Bit Generation		Formatted: Small caps
-		Sec. 1	i o matted. Sman caps

 The knowledge of other restart sequences does not offer additional advantage in predicting the next restart sequence.

3.1.4.1 Constructing Restart Data

To construct restart data, the entropy source **shall** be restarted r = 1000 times; for each restart, c = 1000 consecutive samples **shall** be collected directly from the noise source. The collection of the data **shall** be done as soon as the entropy source is ready to produce outputs for real-world use (e.g., after start-up tests). Note that an entropy source, in its real-world use and during restart testing, may inhibit outputs for a time immediately after restarting in order to allow any transient weak behavior to pass. The output samples are stored in an *r* by *c* matrix *M*, where M[i][j] represents the *j*th sample from the *i*th restart.

Two datasets are constructed using the matrix M:

- The *row* dataset is constructed by concatenating the rows of the matrix *M*, i.e., the *row* dataset is $M[1][1] \parallel ... \parallel M[1][c] \parallel M[2][1] \parallel ... \parallel M[2][c] \parallel ... \parallel M[r][1] \parallel ... \parallel M[r][c]$.
- The *column* dataset is constructed by concatenating the columns of the matrix M, i.e., the *column* dataset is $M[1][1] \parallel ... \parallel M[r][1] \parallel M[1][2] \parallel ... \parallel M[r][2] \parallel ... \parallel M[1][c] \parallel ... \parallel M[r][c]$.

3.1.4.2 Validation Testing

The restart tests check the relations between noise source samples generated after restarting the <u>entropy source</u>, and compare the results to the initial entropy estimate, H_I (see Section 3.1.3).

First, the sanity check described in Section 3.1.4.3 is performed on the matrix M. If the test fails, the validation fails and no entropy estimate is awarded.

If the noise source does not fail the sanity check, then the entropy estimation methods described in Section 6.1 (for the IID track) or Section 6.2 (for the non-IID track) are performed on the *row* and the *column* datasets, based on the track of the entropy source. Let H_r and H_c be the resulting entropy estimates of the row and the column datasets, respectively. The entropy estimates from the row and the column datasets are expected to be close to the initial entropy estimate H_I . If the minimum of H_r and H_c is less than half of H_I , **the validation fails**, and no entropy estimate is awarded. Otherwise, the entropy assessment of the noise source is taken as the minimum of the row, the column and the initial estimates, i.e., min(H_r , H_c , H_I).

If the noise source does not fail the restart tests, and the entropy source does not include a conditioning component, the entropy source will be validated at $\underline{H=}\min(H_r, H_c, H_l)$. If the entropy source includes a conditioning component, the entropy assessment of the entropy source is updated as described in Section 3.1.5.

3.1.4.3 Sanity Check - Most Common Value in the Rows and Columns

This test checks the frequency of the most common value in the rows and the columns of the matrix M. If this frequency is significantly greater than the expected value, given the initial entropy estimate H_1 calculated in Section 3.1.3, the restart test fails. In this case, the validation fails no entropy estimate is awarded.

_		
- (De	leted: and	J
Fo	rmatted: Font: Bold)

Formatted: Small caps

Deleted: device

Formatted: Font: Bold

Formatted: Font: Bold

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
<u>۸</u>	USED FOR RANDOM BIT GENERATION	······	Formatted: Small caps

This sanity check is based on a binomial test, where there are two possible outcomes for each trial: the most frequent value or any other value is observed. The purpose of the test is to determine whether the most frequent value appears more than would be expected, given the initial entropy estimate, H_I . The probability of type I error, denoted α , is set at 0.01 over the entire sanity check, where each of the 2000 binomial experiments³ has type I error probability of 0.000 005.

Only the experiment yielding the highest count is tested. If that experiment passes the test, then the other 1999 experiments will pass as well. If any of the 2000 experiments were to fail, one of the failed experiments would be the experiment having the highest count. Therefore, it is sufficient to test the experiment with the highest count.

Given the 1000 by 1000 restart matrix and the initial entropy estimate H_l , the test is performed as follows:

- 1. Let $p = 2^{-H_I}$. Let α be 0,000 005.
- 2. For each row $(1 \le i \le 1000)$ of the matrix, <u>count</u> the <u>number</u> of <u>occurrences</u> of each sample present in the row. Set X_{Ri} to the highest count value for row *i*. Let X_R be the maximum <u>count</u> value for all the rows, i.e., $X_R = \max(X_{R1}, ..., X_{R1000})$.
- 3. For each column ($1 \le i \le 1000$) of the matrix, count the number of occurrences of each sample present in the column. Set X_{Cl} to the highest count value for column i Let X_C be the maximum count value for all the columns, i.e., $X_C = \max(X_{Cl}, ..., X_{Cl000})$.
- 4. Let $X_{max} = \max(X_c, X_R)$.
- 5. <u>Calculate</u> $P(X \ge X_{max}) = \sum_{j=X_{max}}^{1000} {\binom{1000}{j}} p^j (1-p)^{1000-j}$. If $Pr(X \ge X_{max}) < \alpha$, the test fails. Otherwise, the test passes.

3.1.5 Entropy Estimation for Entropy Sources Using a Conditioning Component

The optional conditioning component gets inputs from the noise source and generates the output of the entropy source. The size of the input and the output of the conditioning component in bits, denoted as n_{in} and n_{outs} , respectively, **shall** be fixed and **shall** be specified by the submitter. Noise source outputs are concatenated to construct n_{in} -bit input to the conditioning function. The entropy of the input, denoted h_{in} , depends on the number of samples needed to construct the n_{in} -bit input. If w samples are needed, then h_{in} is estimated to be $w \times h$ bits. The size of the conditioning component input **shall** be a multiple of the size of the noise source output,

Since the conditioning component is deterministic, the entropy of the output is at most h_{uv} . However, the conditioning component may reduce the entropy of the output. The entropy of the output from the conditioning component is denoted as h_{out} , i.e., h_{out} bits of entropy are contained within the n_{out} -bit output. The entropy of the output also depends on the internals of the conditioning components. In this Recommendation, the narrowest internal width within the

Formatted: Small caps	
Formatted: Small caps	

Deleted: M

Deleted: findDeleted: frequencyDeleted: frequencyDeleted: the most commonDeleted: Fr_n ,Deleted: $1 \le$ Deleted: $1 \le$ Deleted: r_R Deleted: F_R Deleted: Repeat the same process for the columnsDeleted: i.e., findDeleted: frequencyDeleted: F_C Deleted: $1 \le$ Deleted: $1 \le$ Deleted: $1 \le$ Deleted: F_C Deleted: $f < 1000$ Deleted: F_C Deleted: $f < 1000$ Deleted: F_C Deleted: $f < 1000$ Deleted: $f < 1000$ Deleted: f_R, F_C)Deleted: f_R, F_C Deleted: f_R Delet	Deleted	$01/(k \times 2000)$, where k is the sample size.
Deleted: the most commonDeleted: Fr_i ,Deleted: $1 \le$ Deleted: $1 \le$ Deleted: $1 \le$ Deleted: F_R Deleted: r_R Deleted: Repeat the same process for the columnsDeleted: i.e., findDeleted: frequencyDeleted: the most commonDeleted: F_C Deleted: $1 \le$ Deleted: $1 \le$ Deleted: f_C Deleted: f_C Deleted: f_C Deleted: f_C Deleted: f_C Deleted: $f_C = 2^{-H_1}$, Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	find
Deleted: Fr_{i} , Deleted: Fr_{i} , Deleted: $1 \le$ Deleted: $2 1000$ Deleted: F_{R} Deleted: r_{R} Deleted: Repeat the same process for the columns Deleted: Repeat the same process for the columns Deleted: requency Deleted: frequency Deleted: Fc_{i} Deleted: $1 \le$ Deleted: $1 \le$ Deleted: f_{C} Deleted: f_{C} Deleted: f_{C} Deleted: f_{C} Deleted: f_{C} Deleted: f_{C} Deleted: f_{R}, F_{C}). Deleted: $p = 2^{-H_{i}}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	frequency
Deleted: $1 \le$ Deleted: ≤ 1000 Deleted: F_R Deleted: r_R Deleted: r_R Deleted: r_R Deleted: Repeat the same process for the columns Deleted: Repeat the same process for the columns Deleted: i.e., find Deleted: frequency Deleted: frequency Deleted: F_{C_1} Deleted: $1 \le$ Deleted: $1 \le$ Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	the most common
Deleted: ≤ 1000 Deleted: F_R Deleted: r_R Deleted: r_R Deleted: r_R Deleted: Repeat the same process for the columns Deleted: Repeat the same process for the columns Deleted: r_C Deleted: r_C Deleted: r_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: r_C Deleted:	Deleted:	Fr _i ,
Deleted: F_R Deleted: of $Fr_1,, Fr_{1000}$. Deleted: Repeat the same process for the columns Deleted: i.e., find Deleted: frequency Deleted: the most common Deleted: Fc_i Deleted: $1 \le$ Deleted: F_C_i Deleted: F_C Deleted: F_C Deleted: F_C . Deleted: $p = 2^{-H_i}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{100p(1-p)}$.	Deleted:	1≤
Deleted: of $Fr_1,, Fr_{1000}$. Deleted: Repeat the same process for the columns Deleted: i.e., find Deleted: if equency Deleted: the most common Deleted: Fc_i Deleted: $1 \le$ Deleted: $1 \le$ Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	$s \le 1000$
Deleted: Repeat the same process for the columns Deleted: i.e., find Deleted: frequency Deleted: the most common Deleted: F_{C_i} Deleted: $1 \le$ Deleted: $5 = 0$ Deleted: F_C Deleted: F_C Deleted: $p = 2^{-H_i}$. Find the upper bound U of the $(1-\alpha)$ % confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	F_R
Deleted: i.e., find Deleted: frequency Deleted: the most common Deleted: F_{C_i} Deleted: 1≤ Deleted: F_C Deleted: F_C Deleted: F_C Deleted: p_C	Deleted:	of <i>Fr</i> ₁ ,, <i>Fr</i> ₁₀₀₀ .
Deleted: frequency Deleted: the most common Deleted: F_{C_i} Deleted: 1 ≤ Deleted: F_C Deleted: F_C Deleted: F_C Deleted: F_C Deleted: P_C Deleted: P_C Deleted: $p = 2^{-H_i}$. Find the upper bound U of the $(1-\alpha)$ % confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	Repeat the same process for the columns
Deleted: the most common Deleted: Fc_i Deleted: $1 \le$ Deleted: $2 1000$ Deleted: F_C Deleted: of Fc_1, \dots, Fc_{1000} . Let $F = \max(F_k, F_C)$. Deleted: $p = 2^{-H_i}$. Find the upper bound U of the $(1-\alpha)$ % confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	i.e., find
Deleted: Fc_i Deleted: Fc_i Deleted: ≤ 1000 Deleted: F_C Deleted: of Fc_1, \dots, Fc_{1000} Let $F = \max(Fa, F_C)$. Deleted: $p = 2^{-H_i}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	frequency
Deleted: $1 \le$ Deleted: ≤ 1000 Deleted: F_C Deleted: of $F_{C1},,F_{C1000}$ Let $F = \max(F_8, F_C)$. Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	the most common
Deleted: ≤ 1000 Deleted: F_C Deleted: F_C Deleted: of $F_{c_1,,F_{c_{1000}}}$ Let $F = \max(F_{a}, F_{c})$. Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	Fc_i
Deleted: F_C Deleted: of $F_{C1,,F_{C1000}}$ Let $F = \max(F_8, F_C)$. Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	1≤
Deleted: of $Fc_{1,,F}c_{1000}$. [¶] Let $F = \max(F_R, F_C)$. Deleted: $p = 2^{-H_1}$. Find the upper bound U of the $(1-\alpha)$ % confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	. ≤1000
Let $F = \max(F_R, F_C)$. Deleted: $p = 2^{-H_I}$. Find the upper bound U of the $(1-\alpha)\%$ confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}$.	Deleted:	. F _C
confidence interval for the frequency of the most common value as $U = 1000p + Z_{(1-\alpha)}\sqrt{1000p(1-p)}.$		
Deleted: If F is greater than U , the test fails.¶	confidence	e interval for the frequency of the most common value as
	Deleted:	If F is greater than U , the test fails.

Moved (insertion) [4]
---------------------	----

³ The experiments done for each row or column are considered to be independent.

NIST SP 800-90B	Recomment	DATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
_	- (USED FOR RANDOM BIT GENERATION		Formatted: Small caps
conditioning component is denot in Appendix E.	ed as <i>nw</i> . A discussion on the na	arrowest internal width is given		Formatted: Small caps
<u>Noise</u> Source		$\xrightarrow{n_{out} \text{ bits with}}_{h_{out} \text{ bits of entropy}} \rightarrow \underline{\text{Output}}$		_
<u>Figure 3 I</u>	Entropy of the Conditioning Co	mponent	****	Moved (insertion) [5]
The optional conditioning compo a list of vetted cryptographic a Submitters are allowed to use of Section 3.1.5.1.1 is used, the entr a non-listed algorithm is used, the	lgorithms/functions for condition her conditioning components, If a opy estimation is <u>performed</u> as d	oning the noise source outputs. a conditioning component from described in Section 3.1.5.1.2; if		Deleted: ; however, the entropy assessment process differs from the case where a vetted conditioning component is used. Deleted: done
				Deleted: done
 3.1.5.1 Using Vetted Condit Both keyed and unkeyed algorith a list of vetted conditioning com the entropy provided by a vetted 3.1.5.1.1 List of Vetted Cond 	ms have been vetted for condition ponents. Section 3.1.5.1.2 discus conditioning component.			Deleted: Let the amount of entropy in the input to the conditioning component be h_m bits. This input may include multiple samples from one or more noise sources. For example, if the input includes w samples from a noise source with h bits of entropy per sample, h_m is calculated as $w \approx h$. If multiple noise sources are used, h_m is calculated as the sum of amount of entropy from each noise source.¶ The submitter shall state the value of h_m , and the conditioning component shall produce output only when at least h_m bits of entropy are available in its input.¶ Let the output size of the conditioning component be n_{om} (see Figure
Three keyed algorithms have been vetted for a keyed conditioning component:			3), and the narrowest internal width within the conditioning component be q . Information on determining the narrowest internal width is given in Appendix F. Denote the entropy of the output from the conditioning component as h_{out} , i.e., h_{out} bits of entropy are	
1. HMAC, as specified in F. or FIPS 202,	IPS 198, with any approved hash	1 function specified in FIPS 180		contained within the <i>n_{cur}</i> -bit output. Moved up [4]: ¶ Since the conditioning component is deterministic, the entropy of the
2. CMAC, as specified in SI	P 800-38B, with the AES block c	ipher (see FIPS 197), and		output is at most h_{in} . However, the conditioning component may reduce the entropy of the output.
	n Appendix <u>F</u> , with the AES blocks of CBC-MAC for purposes			Deleted: ¶

component in an RBG. Three unkeyed functions have been vetted for <u>an</u> unkeyed conditioning component:

1. Any **approved** hash function specified in FIPS 180 or FIPS 202,

- 2. **Hash_df**, as specified in SP 800-90A, using any **approved** hash function specified in FIPS 180 or FIPS 202, and
- 3. Block_Cipher_df, as specified in SP800-90A using the AES block cipher (see FIPS 197).

The narrowest internal width and the output length for the vetted conditioning functions are provided in the following table.

Moved up [5]: Figure 3 Entropy of the Conditioning Component

Deleted: G

Deleted: The keys used by the keyed conditioning components **shall** be selected by the submitter in advance (per implementation or per device). The submitter **shall** document how the selection is done, and specify the key to test the correctness of the implementation.

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Table 1 The narrowest internal width and output lengths of the vetted conditioning functions.

Conditioning Function	Narrowest Internal Width (<i>nw</i>)	Output Length (nout)	•
НМАС	hash-function output size	hash-function output size	
CMAC	AES block size = 128	AES block size = 128	-
CBC-MAC	AES block size = 128	AES block size = 128	
Hash Function	hash-function output size	hash-function output size	-
Hash_df	hash-function output size	hash-function output size	
Block_Cipher_df	AES key size	AES key size	

For Hash_df and Block_cipher_df, the output length indicated in the table <u>is used as</u> the <u>no of bits to return input parameter for</u> the invocation of Hash_df and Block_Cipher_df (see SP 800-90A).

3.1.5.1.2 Entropy Assessment using Vetted Conditioning Components

When using a conditioning component listed in Section 3.1.5.1.1 (given the assurance of correct implementation by CAVP testing), the entropy of the output is estimated as

 $h_{out} = Output_Entropy(n_{in}, n_{out}, nw, h_{in})$

where Output_Entropy $(n_{in}, n_{out}, nw, h_{in})$ is described as follows⁵:

 $\begin{array}{c} 1. & \text{Let } P_{high} = 2^{-h_{in}} \text{ and } P_{low} = \frac{(1-P_{high})}{2^{n_{in-1}}} \\ \underline{2.} & n = \min(n_{out}, nw). \\ \underline{3.} & \psi = 2^{n_{in}-n}P_{low} + P_{high} \\ \underline{4.} & \underline{U} = 2^{n_{in}-n} + \sqrt{2 n(2^{n_{in}-n}) \ln(2)} \\ \underline{5.} & \omega = U \times P_{low} \\ \underline{6.} & \text{Return} - \log_2(\max(\psi, \omega)) \end{array}$

The entropy source will be	assessed at the	min-entropy per	conditioned o	output, hout, computed	
above. Vetted conditioning	components are j	permitted to clain	n full entropy of	outputs.	

⁵ The formula used to generate Output_Entropy() is adapted from the formula $k_{\alpha} = \frac{m}{n} + \alpha \sqrt{2\frac{m}{n} \ln n}$ provided in Theorem 1 of [RaSt98], such that *m* is equal to $2^{n_{in}}$, *n* is equal to 2^n and α is equal to 1.

Deleted: For HMAC, CMAC, CBC-MAC and the hash functions, the output length (n_{out}) specified in the table is the "natural" output length of the function.

<	Deleted:	shall be
(Deleted:	value of

Deleted: hit

Deleted: used in

Formatted: Centered Deleted: q

Deleted: validated

shall be followed.

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
L	Used for Random Bit Generation	Formatted: Small caps
done, the entropy estimate is reduced	te the outputs from a vetted conditioning component. If this is ced to a proportion of the output (e.g., if there are six bits of he output is truncated to six bits, then the entropy is reduced to	Formatted: Small caps
When additional noise sources are inputs from the primary noise source	available, the length of the input (n_{in}) shall only include the <u>ce.</u>	
3.1.5.2 Using Non-vetted Con	ditioning Components	
<u>size of the input $(h_{in} \text{ and } n_{in})$, the s</u>	onents, the entropy in the output depends on the entropy and size of the output (n_{out}), and the size of the narrowest internal <i>onditioned sequential dataset</i> (as described in item 2 of Section	Deleted: , in part, Deleted: q). The size of the output and the narrowest internal
1.1.1), which shall be computed us	sing the methods described in <u>either</u> Section 6.1 (for IID data) et the obtained entropy estimate per bit be h' .	width is multiplied by the constant 0.85 for a conservative estimate as was done for the vetted conditioning functions listed in Section 3.1.5.1.1. However, an additional parameter is needed:
		Deleted: and
	ponent (n_{out}) shall be treated as a binary string, for purposes of	Deleted: IID and
the entropy estimation.		Deleted: , respectively.
The entropy of the conditioned out	put is estimated as	
$h = \min(0, t, t, t)$	$ntropy(n_{in}, n_{out}, nw, h_{in}), 0.999n_{out}, h' \times n_{out})_{}$	Formatted: Centered
		Deleted: $\min(h_{in}, 0.85n_{out}, 0.85q, h' \times n_{out}).$
<u>The description of Output_Entrop</u> source having a non-vetted conditi constant 0.999. The entropy source <i>h</i> _{out} , computed above.	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output,	
<u>The description of Output_Entrop</u> source having a non-vetted conditi constant 0.999. The entropy source <i>h</i> _{out} , computed above.	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be	
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source <i>h</i> _{out} , computed above. Note that truncating subsequent to	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source.	Deleted: $\min(h_{in}, 0.85n_{out}, 0.85q, h' \times n_{out}).$
The description of Output_Entropsource having a non-vetted conditiconstant 0.999.The entropy sourcehout, computed above.Note that truncating subsequent toperformed before providing output3.1.6 Additional Noise Source	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source.	Deleted: $\min(h_{in}, 0.85n_{out}, 0.85q, h' \times n_{out})$.
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assumed to	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source.	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assum that is responsible to generate range physical noise source are conside	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If
The description of Output_Entrop source having a non-vetted condition constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assum that is responsible to generate rame physical noise source are conside oscillators, where the sampled bits a	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: independent noise sources are used, the sum
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assum that is responsible to generate range physical noise source are conside	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: independent noise sources are used, the sum Deleted: entropies provided by each
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assun that is responsible to generate rand physical noise source are conside oscillators, where the sampled bits a bits are XORed together). In addition to the primary noise sou the entropy source, and their outpur of these outputs may be hard to e	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: independent noise sources are used, the sum Deleted: entropies provided by each Deleted: is used
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assun that is responsible to generate rand physical noise source are conside oscillators, where the sampled bits a bits are XORed together). In addition to the primary noise sou the entropy source, and their output of these outputs may be hard to e sources (e.g., packet arrival times i	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. . es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring ure concatenated to get an eight-bit output, or where the samples arce outputs, outputs of other noise sources may be available to ts may be used to increase security. However, the joint entropy stimate, especially when there are dependencies between the n a communication network and hard drive access times).	Deleted: min(h_{tn} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: entropies provided by each Deleted: is used Deleted: the entropy
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assun that is responsible to generate rand physical noise source are conside oscillators, where the sampled bits a bits are XORed together). In addition to the primary noise sou the entropy source, and their output of these outputs may be hard to e sources (e.g., packet arrival times i This Recommendation allows one t	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. $_$ es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring tre concatenated to get an eight-bit output, or where the samples arce outputs, outputs of other noise sources may be available to ts may be used to increase security. However, the joint entropy stimate, especially when there are dependencies between the	Deleted: min(h_{in} , 0.85 n_{out} , 0.85 q , $h' \times n_{out}$). Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: independent noise sources are used, the sum Deleted: entropies provided by each Deleted: is used Deleted: the entropy Deleted: the entropy
The description of Output_Entrop source having a non-vetted conditi constant 0.999. The entropy source hout, computed above. Note that truncating subsequent to performed before providing output 3.1.6 Additional Noise Source In this Recommendation, it is assun that is responsible to generate rand physical noise source are conside oscillators, where the sampled bits a bits are XORed together). In addition to the primary noise sou the entropy source, and their output of these outputs may be hard to e sources (e.g., packet arrival times i This Recommendation allows one t primary noise source to generate	y is given in Section 3.1.5.1.2. To avoid approving an entropy oning component with full entropy, n_{out} is multiplied by the e will be validated at the min-entropy per conditioned output, the use of a non-vetted conditioning component shall not be from the entropy source. . es hed that the entropy sources have a unique primary noise source domness. It should be noted that multiple copies of the same red as a single noise source (e.g., a source with eight ring ure concatenated to get an eight-bit output, or where the samples arce outputs, outputs of other noise sources may be available to ts may be used to increase security. However, the joint entropy stimate, especially when there are dependencies between the n a communication network and hard drive access times).	Deleted: $min(h_{tn}, 0.85n_{out}, 0.85q, h' \times n_{out}).$ Formatted: Not Highlight Deleted: Using Multiple Deleted: If Deleted: entropies provided by each Deleted: is used Deleted: the entropy

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

3.2 Requirements for Validation Testing

In this section, high-level requirements (on both submitters and testers) are presented for validation testing.

3.2.1 Requirements on the Entropy Source

The intent of these requirements is to assist the developer in designing/implementing an entropy source that can provide outputs with a consistent amount of entropy and to produce the required documentation for entropy source validation,

- The entire design of the entropy source shall be documented, including the interaction of the components specified in Section 2.2. The documentation shall justify why the entropy source can be relied upon to produce bits with entropy.
- 2. Documentation **shall** describe the operation of the entropy source, including how the entropy source works, and how to obtain data from within the entropy source for validation testing.
- Documentation shall describe the range of operating conditions (e.g., temperature range, voltages, system activity, etc.) under which the entropy source is claimed to operate correctly. The entropy source outputs are expected to have similar entropy rates in this specified range of operating conditions.
- 4. The entropy source **shall** have a well-defined (conceptual) security boundary. This security boundary **shall** be documented; the documentation **shall** include a description of the content of the security boundary.
- 5. When a conditioning component is not used, the output from the entropy source is the output of the noise source, and no additional interface is required. In this case, the noise-source output is available during both validation testing and normal operation. When a conditioning component is included in the entropy source, the output from the entropy source is the output of the conditioning component, and an additional interface is required to access the noise-source output. In this case, the noise-source output shall be accessible via the interface during validation testing, but the interface may be disabled, otherwise. The designer shall fully document the method used to get access to the raw noise source output using this interface shall not be provided to the conditioning component for processing and eventual output as normal entropy-source output.
- 6. The entropy source may restrict access to raw noise source samples to special circumstances that are not available to users in the field, and the documentation shall explain why this restriction is not expected to substantially alter the behavior of the entropy source as tested during validation.
- 7. Documentation shall contain a description of the restarting process applied during the restart tests.

3.2.2 Requirements on the Noise Source

The entropy source will have no more entropy than that provided by the noise source, and as such, the noise source requires special attention during validation testing. This is partly due to the fundamental importance of the noise source (if it does not do its job, the entropy source will not

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Deleted:

Formatted: Font color: Auto

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"
Deleted: 2.2.

1	etc.). Analysis of the
-(Formatted: Font color: Black
Y	Deleted: source's behavior at the edges of these
)(Deleted: shall be documented, along with likely failure modes
ľ	Deleted: , which should be the same as or be contained within a FIPS 140 cryptographic module boundary
Y	Deleted: Note that the security boundary may extend beyond the entropy source itself (e.g., the entropy source may be contained within a larger boundary that also contains a DRBG); also note that the security boundary may be logical, rather than physical.
Y	Formatted: Space Before: 12 pt, No bullets or numbering
-(Deleted: ,
(Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"
-(Formatted: Font: Not Bold
-(Formatted: Font: Not Bold
/	Deleted: An optional, recommended feature of the entropy source is as follows: [¶] The entropy source may contain multiple noise sources to improve resiliency with respect to degradation or misbehavior. Only independent noise sources are allowed by this Recommendation. When multiple noise sources are used, the requirements specified in Section 3.2.2 shall apply to each noise source. [¶] If multiple noise sources will be available operationally; datasets

obtained from noise sources will be available operationary, dataset shall not be used for entropy assessment.

Formatted: Highlight

Formatted: Indent: Left: 0.25", Space After: 6 pt, No bullets or numbering

requires more complicated testing.	
The requirements for the <i>noise source</i> are as follows:	
1. The operation of the noise source shall be documented; this documentation shall include a description of how the noise source works, where the unpredictability comes from, and rationale for why the noise source provides acceptable entropy output, and should reference relevant, existing research and literature.	Deleted: about Deleted: Documentation shall also
2. The behavior of the noise source shall be stationary (i.e., the probability distributions of the noise source outputs do not change when shifted in time). Documentation shall include why it is believed that the entropy rate does not change significantly during normal operation. This can be in broad terms of where the unpredictability comes from and a rough description of the behavior of the noise source (to show that it is reasonable to assume that the behavior is <u>stationary</u>).	Deleted: Documentation shall provide an explicit statement of the expected entropy rate and provide a technical argument for why the noise source can support that entropy rate. Deleted: stable
3. Documentation shall provide an explicit statement of the expected entropy provided by the noise source outputs and provide a technical argument for why the noise source can support that entropy rate. To support this, documentation may include a stochastic model of the noise source outputs, and an entropy estimation based on this stochastic model may be included.	
4. The noise source state shall be protected from adversarial knowledge or influence to the greatest extent possible. The methods used for this shall be documented, including a description of the (conceptual) security boundary's role in protecting the noise source from adversarial observation or influence.	
5. Although the noise source is not required to produce unbiased and independent outputs, it shall exhibit random behavior; i.e., the output shall not be definable by any known algorithmic rule. Documentation shall indicate whether the noise source produces IID data or non-IID data. This claim will be used in determining the test path followed during validation. If the submitter makes an IID claim, documentation shall include rationale for the claim.	
6. The noise source shall generate fixed-length bitstrings. A description of the output space of the noise source shall be provided. Documentation shall specify the fixed <u>symbol</u> size (in bits) and the list (or range) of all possible outputs from each noise source.	Deleted: sample
7. <u>If additional noise source outputs to increase security are used, a document that describes the additional noise sources shall be included.</u>	Deleted: <#>An ordered ranking of the bits in the <i>n</i> -bit samples shall be provided. A rank of '1' shall correspond to the bit assumed to be contributing the most entropy to the sample, and a
3.2.3 Requirements on the Conditioning Component	rank of <i>n</i> shall correspond to the bit contributing the least amount. If multiple bits contribute the same amount of entropy, the ranks
 The requirements for the <i>conditioning component</i> are as follows: <u>1.</u> The submitter shall document which conditioning component is used and the details about its implementation (e.g., the hash function and/or key size used). Documentation shall include the input and the output sizes (<i>n_{in}</i> and <i>n_{out}</i>). 	can be assigned arbitrarily among those bits. The algorithm specified in Section 6.4 shall be used to assign ranks. ⁴ <#>The noise source may include simple post-processing functions to improve the quality of its outputs. When a post-processing function is used, the noise source shall use only one of the approved post-processing functions: Von Neumann's method, the linear filtering method, or the length-of-runs method. The descriptions of these methods are given in Appendix E. If other
19	post-processing functions are approved in the future, they will be included in the implementation guidance [IG140-2].

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

provide the expected amount of security), and partly because the probabilistic nature of its behavior

Deleted: (2nd Draft) Formatted: Small caps Formatted: Small caps

1

NIST SP 800-90B

NIS	ST SP 800-90B	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
2	If the entropy source uses a vetted conditioning component as listed in Section 3.1.5.1.1, the	Formatted: Small caps
<u> </u>	implementation of the component shall be tested to obtain assurance of correctness before subsequent testing of the entropy source. The submitter shall specify any keys used to test the	Deleted: 3.1.5.1.1, the implementation of that conditioning component shall be tested to obtain assurance of correctness.
	correctness of the conditioning component implementation during validation testing. If the testing fails, validation of the entropy source fails. The submitter may retest with the corrected	
3.	implementation until the conditioning component passes the validation test. If the conditioning component uses cryptographic keys, the keys may be (1) fixed to a pre-	
	determined value, (2) set using some additional input to the device, or (3) generated by using the noise source outputs. The key shall be determined before any outputs are generated from the conditioning component.	
4.	Any value which is used to determine the key shall not be used as any other input to the conditioning component. The input entropy to the conditioning component (h_{in}) shall not	Formatted: List Paragraph, Space Before: 0 pt
	include any entropy provided to the key of a keyed function.	
5.	For entropy sources containing a conditioning component that is not listed in Section 3.1.5.1.1,	Deleted: 3.1.5.1.1
	a description of the conditioning component shall be provided. Documentation shall state the	
	narrowest internal width and the size of the output blocks from the conditioning component.	
	The submitter shall provide mathematical evidence that the component is suitable to be used	
	to condition the noise source output, and does not significantly reduce the entropy rate of the	
	entropy source output. The submitter shall also provide a justification about why the	
	conditioning component does not act poorly when the noise source data is not independent.	
3.2	.4 Requirements on Data Collection	Deleted: <#>Documentation shall include the minimum amount
Th	e requirements on data collection are listed below:	of entropy <i>h</i> _{in} in the input of the conditioning component.
1.	The data collection for entropy estimation shall be performed in one of the three ways described below:	
	• By the submitter with a witness from the testing lab, or	
	• By the testing lab itself, or	
	• Prepared by the submitter in advance of testing, along with the following documentation: a specification of the data generation process, and a signed document that attests that the specification was followed.	
2.	Data collected from the noise source for validation testing shall be raw output values	Deleted: (including digitization and optional post-processing).
3.	The data collection process shall not require a detailed knowledge of the noise source or intrusive actions that may alter the behavior of the noise source (e.g., drilling into the device).	
4.	Data shall be collected from the noise source and any conditioning component that is not listed in Section 3.1.5.1.1 (if used) under normal operating conditions.	Deleted: (i.e., when it is reasonable to expect entropy in the outputs).
5.	Data shall be collected from the entropy source under validation. Any relevant version of the hardware or software updates shall be associated with the data.	uupub).
5.	Documentation <u>of the</u> data collection <u>method</u> shall be provided so that a lab or submitter can perform (or replicate) the collection process at a later time, if necessary.	Deleted: on

1

20

.

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

(Deleted: (2 nd Draft)
(Formatted: Small caps
-	Formatted: Small caps

7. Documentation explaining why the data collection method does not interfere with the noise source shall be provided.

I

I

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted: (2 nd Draft)
Used for Random Bit Generation	 Formatted: Small caps
4 Health Tests	 Formatted: Small caps
Health tests are an important component of the entropy source, as they aim to detect deviations from the intended behavior of the noise source as quickly as possible and with a high probability.	
Noise sources can be fragile, and hence, can be affected by changes in the operating conditions of the device, such as the temperature, humidity, or electric field, which might result in unexpected	 Deleted: the
behavior. <u>The health</u> tests take the entropy assessment as input ⁶ , and characterize the expected behavior of the noise source based on this value. Requirements on the health tests are listed in	 Deleted: Health
Section 4.3.	 Field Code Changed
4.1 Health Test Overview	
The health testing of a noise source is likely to be very technology-specific. Since, in <u>most cases</u> , the noise source will not produce unbiased, independent binary data, traditional statistical	 Deleted: the vast majority of
procedures (e.g., <u>the</u> randomness tests described in NIST SP 800-22) that test the hypothesis of unbiased, independent bits will almost always fail, and thus are not useful for monitoring the noise	~
source. In general, tests on the noise source <u>need</u> to be tailored carefully, taking into account the expected statistical behavior of the correctly operating noise source.	 Deleted: have
The health testing of noise sources will typically be designed to detect failures of the noise source, based on the expected output during a failure, or to detect a deviation from the expected output during the correct operation of the noise source. Health tests are expected to raise an alarm in three cases:	
1. When there is a significant decrease in the entropy of the outputs,	
2. When noise source failures occur, or	
3. When hardware fails, and implementations do not work correctly.	
4.2 Types of Health Tests	
Health tests are applied to the outputs of a noise source before any conditioning is done. (It is permissible to also apply some health tests to conditioned outputs, but this is not required.)	
Start-up health tests are designed to be performed after powering up, or rebooting, and before the	 Deleted:
first use of the entropy source. They provide some assurance that the entropy source components are working as expected before they are used during normal operating conditions, and that nothing	 Deleted: ensure
has failed since the last time that the start-up tests were run. ⁷ The samples drawn from the noise source during the startup tests shall not be available for normal operations until the tests are	
completed; these samples may be discarded at any time, or may be used after the completion of	 Deleted: after testing,
the tests if there are no errors	 Deleted: simply
	 (Formatted: Font: (Intl) Arial Unicode MS
⁶ The submitter may claim a low entropy estimate (as described in Section 3.1.3) to reduce the false positive rates.	

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

I

1

⁷ The specific conditions in which the startup tests must be run for FIPS-validated cryptographic modules are determined by the requirements of FIPS 140. This document imposes no additional requirements for the use of start-up health testing.

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted
	USED FOR RANDOM BIT GENERATION	 Formatt

Continuous health tests are run indefinitely <u>on the outputs of the noise source⁸</u> while the <u>noise</u> source is operating. Continuous tests focus on the noise source behavior and aim to detect failures as the noise source <u>produces outputs</u>. The purpose of continuous tests is to allow the entropy source to detect many kinds of failures in its underlying noise source. These tests are run continuously on all digitized samples obtained from the noise source, and so tests must have a very low probability of raising a false alarm during the normal operation of the noise source. In many systems, a reasonable false positive probability will make it extremely unlikely that a properly functioning device will indicate a malfunction, even in a very long service life. <u>Continuous</u> tests are resource-constrained – this limits their ability to detect noise source <u>failures</u> – so they are usually designed so that only gross failures are likely to be detected.

Note that continuous health tests operate over a stream of values. These sample values may be output from the entropy source as they are generated and (optionally) processed by a conditioning component; there is no need to inhibit output from the noise source or entropy source while running the test. It is important to understand that this may result in poor entropy source outputs for a time, since the error is only signaled once significant evidence has been accumulated, and these values may have already been output by the entropy source. As a result, it is important that the false positive probability be set to an acceptable level. In the following discussion, all calculations assume that a false positive probability of approximately one error in 2^{20} samples generated by the noise source is acceptable; however, the formulas given can be adapted for different false positive probabilities selected by the submitter.

On-demand health tests can be called at any time. This Recommendation does not require performing testing during operation. However, it does require that the entropy source be capable of performing on-demand health tests of the noise source output. Note that resetting, rebooting, or powering up are acceptable methods for initiating an on-demand test if the procedure results in the immediate execution of the start-up tests. Samples collected from the noise source during on-demand health tests **shall not** be available for use until the tests are completed, however these samples may be discarded at any time, or may be used after the completion of the tests providing that there are no errors.

4.3 Requirements for Health Tests

Health tests on the noise source are a required component of an entropy source. The health tests **shall** include both continuous and <u>start-up</u> tests. 1. The continuous tests **shall** include either;

a. The approved continuous health tests, described in Section 1.1, or

b. Some developer-defined tests that meet the requirements for a substitution of those approved tests, as described in Section 4.5. If developer-defined health tests are used in place of any of the **approved** health tests, the tester **shall** verify that the implemented tests detect the failure conditions detected by the **approved** continuous health tests, as described in Section 1.1. The need to use the two **approved** continuous health tests can be avoided by providing convincing evidence that the failure being considered will be reliably

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	
Deleted: entropy	
Deleted: runs.	

-(Deleted: Note that continuous
-(Deleted: problems,
(Deleted:
(Formatted: Font: Not Italic, (Intl) Arial Unicode MS
{	Deleted: the

-(Deleted: any particular on-demand
(Formatted: Font: Not Italic
(Deleted:
-(Deleted: and may simply be discarded.

Deleted: once

Deleted: 240

Deleted: startup	
Moved (insertion) [6]	
Formatted: Font: Bold	

<u>* Entropy sources may have a warm-up phase in which the outputs are inhibited for a time immediately after startup. Continuous health testing is not required during the warm up phase.</u>

IIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
detected by the developer-def	ined continuous tests. This evidence may be a proof or the	Formatted: Small caps
results of statistical simulation		Moved (insertion) [7]
c. The continuous tests may incl	ude additional tests defined by the developer.	
· · · · · · · · · · · · · · · · · · ·	ropy source shall notify the consuming application (e.g., the	Moved (insertion) [8]
	developer may have defined different types of failures (e.g.,	Formatted: Font: Times New Roman
• · · · · · · · · · · · · · · · · · · ·	e application is allowed to react differently to different types	
	tput for a short time). The developer is allowed to define	
	ntermittent and persistent failures. If so, these values (with ilities) shall be specified in the submission documentation.	
	ermittent failures and allows the noise source to return to	
1.	shall provide evidence that: a) The intermittent failures	
	remely likely to be intermittent failures; and b) the tests will	
	one occurs, and will ultimately signal an error condition to	
	cease operation. In the case where a persistent failure is	
	I not produce any outputs. The module may support being	
	the consuming application or system. (An example of a	
	ense is a remote system whose cryptographic module cannot	
be replaced quickly, but which m	ust continue functioning.)	
. The optimal value for the false p	ositive probability may depend on the rate that the entropy	
	the approved continuous health tests, the false positive	
	be between 2^{-20} and 2^{-40} . Lower probability values are	
acceptable. The submitter shall sp	pecify and document a false positive probability suitable for	
their application.		
. The entropy source's startup test	s shall run the continuous health tests over at least 1024	
	tests may include other tests defined by the developer. The	
	ng may be released for operational use after the startup tests	
have been passed, or may be disca	arded at any time.	
. The entropy source shall suppor	t on-demand testing. The on-demand tests shall include at	
	start-up tests. The entropy source may support on-demand	Moved (insertion) [9]
testing by restarting the entropy	source and rerunning the startup tests, or by rerunning the	
startup tests without restarting t	he entropy source. The documentation shall specify the	Moved (insertion) [10]
- · ·	ing. The on-demand tests may include other tests defined by	
the developer, in addition to the te	esting done in the start-up tests.	
. Health tests shall be performed o	n the noise source samples before any conditioning is done.	
	rformed on the outputs of the conditioning function.	
. The submitter shall provide docu	mentation that specifies all entropy source health tests and	
	n shall include a description of the health tests, source code,	
	which each health test is performed (e.g., at power-up,	Deleted: start

24

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

continuously, or on-demand), and include rationale indicating why each test is believed to be appropriate for detecting one or more failures in the noise source.

- 8. The submitter shall provide documentation of any known or suspected noise source failure modes, (e.g., the noise source starts producing periodic outputs like 101...01), and shall include developer-defined continuous tests to detect those failures. These should include potential failure modes that might be caused by an attack on the device.
- 9. Appropriate health tests that are tailored to the noise source should place special emphasis on the detection of misbehavior near the boundary between the nominal operating environment and abnormal conditions. This requires a thorough understanding of the operation of the noise source

Approved Continuous Health Tests 4.4

This recommendation provides two approved health tests: the Repetition Count test, and the Adaptive Proportion test. If these two health tests are included among the continuous health tests of the entropy source, no other tests are required. However, the developer is advised to include additional continuous health tests tailored to the noise source.

Both tests are designed to require minimal resources, and to be computed on-the-fly, while noise source samples are being produced, possibly conditioned, and output, by the entropy source. Neither test needs to delay the availability of the noise source samples.

Like all statistical tests, both of these tests have a false positive probability – the probability that a

correctly functioning noise source will fail the test on a given output. In many applications, a reasonable choice for the probability of type I error is $\alpha = 2\frac{-20}{4}$; this value will be used in all the calculations in the rest of this section. The <u>developer</u> of the entropy source shall determine a reasonable probability, of type I error (and corresponding cutoff values), based the details of the entropy source and its consuming application.

4.4.1 Repetition Count Test

The goal of the Repetition Count Test is to quickly detect catastrophic failures that cause the noise source to become "stuck" on a single output value for a long period of time. It can be considered as an update of the "stuck test" that was previously required for random number generators within FIPS-approved cryptographic modules. Note that this test is intended to detect a total failure of the noise source.

Given the assessed min-entropy H of a noise source, the probability¹⁰ of that source generating nidentical samples consecutively is at most $2^{=H(n-1)}$. The test declares an error if a sample is repeated C or more times. The cutoff value C is determined by the acceptable false-positive probability α and the entropy estimate Husing the following formula

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Deleted: entropy

(D

Deleted: developer ubmitter shall document rovide documentation of any known or suspected noise source failure modes,...(e.g., the noise source starts producing periodic outputs like 101...01), and **shall** include vendor . [5]

Deleted: <#>The submitter shall provide source code for any tests implemented as an alternative or in addition to those listed in this Recommendation.

<#>Health tests shall be performed on the noise source samples before any conditioning is done.

<#>Additional health tests may be performed on the outputs of the conditioning function. Any such tests shall be fully documented. <#>In the case where a sufficiently persistent failure is detected

Moved up [8]: <#>, the entropy source shall notify the consuming application (e.g., the RBG) of the error condition.

Formatted: Font: Times New Roman

Deleted: <#>The entropy source may detect intermittent failures and react to them in other ways, e.g., by inhibiting output for a short time, before notification of the error. The submitter shall describe the conditions for intermittent and persistent failures. <#>The expected false positive probability of the health tests signaling a major failure to the consuming application shall be documented.

Moved up [6]: <#>The continuous tests shall include either: <#>The approved continuous health tests, described in Section 4.4. or

Moved up [7]: <#>This evidence may be a proof or the results of statistical imulations.

Deleted: <#>...4.4, or

<#>Some vendor-defined tests that meet the requirements to substitute for those approved tests, as described in Section 4.5. If vendor-defined health tests are used in place of any approved health tests, the tester shall verify that the implemented tests detect the failure conditions detected by the approved continuous health tests, as described in Section 4.4. The submitter can avoid the need to use the two approved continuous health tests by providing ... [6]

Deleted: <#>If any of the approved continuous health tests are used by the entropy source, the false positive probability for these

Moved up [9]: <#>The entropy source may support on-demand testing by restarting the entropy source and rerunning the startur[8]
Deleted: <=>1 [9]
Deleted: alloweddvised to include additional continuous health tests [10]
Deleted: while noise source samples are being produced, possibly conditioned, and outputby the entropy source. Neither1]
Deleted: An many applications, a reasonable choice for the false positiverobability in many applicationsf type I error is $\alpha = \beta_{12}$
Deleted: repetition count testepetition Count Test is to quickly detect catastrophic failures that cause the noise source to becom
Deleted: <i>H</i> (<i>n</i> -1). The test declares an error if a sample is repeated <i>C</i> or more than theimes. The cutoff value <i>C</i> , whichis [14]
Formatted: Indent: Left: 0", First line: 0"
Deleted: $\cdots^{+} p_{1} p_{2} c^{-} \dots p_{1} c^{-1} + \dots + p_{1} p_{k} c^{-} \dots k p_{1} c^{-1} = (p_{1} + \dots + p_{k}) p_{1} c^{-}$ $^{-1} = p_{1} c^{-1} = 2^{\dots, H(c)} \dots [15]$

¹⁰ This probability can be obtained as follows. Let a random variable take possible values with probabilities p_i , for i=1,..,k, where $p_1 \ge p_2 \ge \dots \ge p_k$. Then, the probability of producing any C identical consecutive samples is $\sum p_i^C$. Since, $\sum p_i^C$ is less than or equal to $p_1 \cdot p_1 \overset{C-1}{\checkmark} + \underbrace{p_2 \cdot p_1 \overset{C-1}{\checkmark} + \ldots + \underbrace{p_k \cdot p_l \overset{C-1}{\leftarrow} = (p_1 + \ldots + p_k) p_1 \overset{C-1}{\checkmark} = p_1 \overset{C-1}{\checkmark} = 2 \overset{H(C-1)}{\checkmark}$

RECOMMENDATION FOR THE ENTROPY SOURCES Used FOR RANDOM BIT GENERATION

$$C = \underline{1+} \left[\frac{-\log_2 \alpha}{H} \right]$$

This value of *C* is the smallest integer satisfying the inequality $\alpha \ge 2^{-H(C_{\bullet}^{-1})}$, which ensures that the probability of obtaining a sequence of identical values from *C* consecutive noise source samples is <u>at most</u> α . For example, for $\alpha = 2^{-20}$, an entropy source with H = 2.0 bits per sample would have a repetition count test cutoff value of 1 + 20/2.0 = 11.

Let *next()* yield the next sample from the noise source. Given a <u>continuous sequence</u> of noise source <u>samples</u>, and the cutoff value *C*, the repetition count test is performed as follows:

This test's cutoff value can be applied to any entropy estimate, H, including very small and very large estimates. However, it is important to note that this test is not very powerful – it is able to detect only catastrophic failures of a noise source. For example, a noise source evaluated at eight bits of min-entropy per sample has a cutoff value of six repetitions to ensure a false-positive rate of approximately once per 10^{12} samples generated. If that noise source somehow failed to the point that each sample had a 1/16 probability of being the same as the previous sample, so that it was providing only four bits of min-entropy per sample, it would still be expected to take about one million samples before the repetition count test would notice the problem.

4.4.2 Adaptive Proportion Test

The <u>Adaptive Proportion Test</u> is designed to detect a large loss of entropy that might occur as a result of some physical failure or environmental change affecting the noise source. The test continuously measures the local frequency of occurrence of a sample value in a sequence of noise source samples to determine if the sample occurs too frequently. Thus, the test is able to detect when some value begins to occur much more frequently than expected, given the source's assessed entropy per sample. Note that this test is intended to detect more subtle failures of the noise source, rather than the kind of total failure detected by the Repetition Count Test.

The test takes a sample from the noise source, and then counts the number of times that the same value occurs within the next W-1 samples. If that count reaches the cutoff value C, the test declares an error. The window size W is selected based on the alphabet size, and **shall** be assigned to 1024 if the noise source is binary (that is, the noise source produces only two distinct values) and 512 if the noise source is not binary (that is, the noise source produces more than two distinct values).

Deleted: (2 nd Draft)	—
Formatted: Small caps	\rightarrow
Formatted: Small caps	_
Deleted: $\left[1 + \frac{-\log_2 \alpha}{H}\right]$.	
Field Code Changed	
Formatted: Font: Times New Roman	
Deleted:	_
Deleted:	$ \rightarrow$
Deleted:	\rightarrow
Deleted: no greater than	\rightarrow
Deleted: -40	\rightarrow
Deleted:	\prec
Deleted: +40	\prec
Deleted: 21	
Deleted: dataset	_
Deleted: observations	_
Deleted: <#>Let <i>A</i> be the current sample value. ¶ <#>Initialize the counter <i>B</i> to 1.¶	
<#>If the next sample value is A, increment B by one.	
Formatted: Space After: 0 pt	
Deleted: is equal to	
Formatted: Font: Not Italic	
Deleted: , return an error	
Deleted: \neg Let <i>A</i> be the next sample value. ¶ \neg Initialize the counter <i>B</i> to 1.¶ \rightarrow	
Formatted [16]
Deleted: Running the repetition count test requires enough [17]
Formatted [18]
Formatted: Font: (Intl) Arial Unicode MS	
Deleted: one trillion	
Deleted: sixteen	_
Deleted: adaptive proportion test	
Deleted:	
Deleted:	_
Deleted: current sample	_
Deleted: is repeated	
Deleted: a window of size	_
Deleted: the sample is repeated more frequently than a	\prec
Deleted: , which is determined by the false positive probability	1207
Deleted: it	עד
Deleted: it	

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Let *next()* yield the next sample from the noise source. Given a <u>continuous</u> sequence of noise <u>samples</u>, the cutoff value *C* and the window size *W*, the <u>adaptive proportion</u> test is performed as / follows:

1.	A = next()	
2.	<u>B</u> =1.	-
3.	For $i = 1$ to $W-1$	
	If (A = next()) B = B + 1	-
	If $(\underline{B} \ge \underline{C})$ signal a failure	4
4.	Go to Step 1.	-

The cutoff value *C* is chosen such that the probability of observing <u>*C* or</u> more identical samples in a window size of *W* is at most α . Mathematically, *C* satisfies the following equation¹¹:

 $\Pr(B \ge C) \le \alpha.$

For binary sources, the developer is allowed to extend the test by also checking that $W-B \ge C$, which would guarantee that a binary value occurring too frequently will be caught on the first test window.

For noise sources where the alphabet size is large (e.g., greater than 256), the submitter may reduce the alphabet size to a lower value, using the method described in Section 6.4.

The following table gives example cutoff values for various min-entropy estimates per sample and window sizes with $\alpha = 2^{-20}$.

Table 2 Example cutoff values of the Adaptive Proportion Test

<u>B</u>	Binary data Non-binary data					
<u>W=1024</u>			<u>W=512</u>			
Entropy	Cutoff		Cutoff			
	Value C		Value C			
0.2	<u>941</u>	0,5	<u>410</u>	¥.	x.	
0.4	<u>.840</u>	1	311		T	•
0.6	748	2	<u>177</u>	▼	<u></u>	-
0.8	<u>664</u>	4	<u>62</u>	▼		-
1	<u>,589</u>	<u>8</u>	<u>13</u>	₹	x .	•

¹¹ This probability can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office Calc, and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in Microsoft Excel, *C* would be computed as =<u>1+</u>CRITBINOM(W, power(2_t(_-H)), 1_t- α).

(Deleted: (2 nd Draft)	
Formatted	[20]
Formatted	[21]
Deleted: source observations	
	$ \longrightarrow $
Deleted: <#>Let A be the current sample value.¶	[22]
Formatted	[23]
Deleted: to)
Formatted	[25]
Deleted: the next sample is equal to	
	$ \longrightarrow$
Deleted: , increment	$ \longrightarrow $
Deleted:)
Formatted	[24]
Formatted	[26]
Formatted	
	[27]
Deleted: by	$ \longrightarrow $
Formatted	[28]
Formatted	[29]
Formatted	[30]
Deleted: >	
	$ \longrightarrow $
Deleted: , return error.	$ \longrightarrow$
Formatted	[31]
Formatted	[32]
Formatted	[33]
Deleted: Running the test requires enough memory to sto	
Deleted: than <i>C</i> identical samples in a window size of	
	<u>" !:: 455]</u>
Deleted: $> \dots C$ = α ,	[36]
Deleted: where $p = 2^{-H}$. The following tables give cutoff	values391
Deleted: proportion test on binary data for various	[38]
Merged Cells	[42]
Formatted	
	[43]
Inserted Cells	[46]
Deleted: H	
Formatted	[41]
Deleted: Probability of detecting noise source failure)
Merged Cells	[39]
Formatted)
Formatted Table	[45]
	[40]
Deleted: value	$ \longrightarrow $
Formatted	[44]
Deleted:	[47]
"	[47]
Formatted	[48]
Formatted	[49]
Formatted Table	[50]
Deleted: 960)
Formatted	[51]
Deleted: 25	
	\dashv
Deleted: 0.69	$ \longrightarrow$
Deleted: 0)
Deleted Cells	[52]
Deleted: 0	
Deleted Cells	[52]
Formatted	[53]
×	[54]
Formatted	[55]
Formatted	[56]
Deleted: 867)
Formatted	[57]
Deleted: 0.86	[37]
>	-
Deleted Cells	[58]
Deleted: ≈)
Formatted	[59]
Formatted	[60]

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES Deleted: (2 nd Draft)	
	USED FOR RANDOM BIT GENERATION Formatted: Small caps	
1.5 <u>Developer</u> -Defined Alterr	natives to the Continuous Health Tests	
	s permitted in addition to the two approved tests listed in Deleted: Designer	
	nces, the <u>developer</u> -defined tests may take the place of the two Deleted: vendor	
approved tests. The goal of the two o detect two conditions:	o approved continuous health tests <u>specified</u> in Section 1.1, is	
a. Some value is consecutively r entropy per sample of the source	epeated many more times than expected, given the assessed ee.	
b. Some value becomes much m expected, given the assessed en	nore common in the sequence of noise source outputs than tropy per sample of the source.	
The <u>developer</u> of the entropy source	e is in an excellent position to design health tests specific to the Deleted: designer	
	I failure modes. Therefore, this Recommendation also permits	
	h tests to be used in place of the approved tests in Section 4.4, Deleted: designer	
	e <u>developer</u> -defined tests and the entropy source itself can Deleted: designer	
	s will not occur without being detected by the <u>entropy</u> source	
with at least the same probability.		
	Deleted: Alternative Her	alth Test Criteria
		aph, Tab stops: 0.25", Left
	than $\lceil 100/H \rceil$ consecutive times in a row in the sequence of	
noise source samples, the test s	hall detect this with <u>a probability of at least 99_%</u> .	
Let $P = 2^{-H}$ If the noise sources	rce's behavior changes so that the probability of observing a Deleted:	
	to at least $P^* = 2_{\mathbf{v}}^{-H/2}$, then the test shall detect this <u>change</u> with Deleted :	
	hen examining 50,000 consecutive samples from this degraded Deleted: ,	
source.		
The <u>use of one or more of</u> the app	proved continuous health test described in Section 1.1 can be	void
woided by providing convincing	evidence that the failure being considered will be reliably Deleted: need to use the	two
	continuous tests. This evidence may be a proof or the results of Formatted: Font: Not	Bold
statistical simulations.	Deleted: tests	
	Deleted: vendor	
▲		Bold, Font color: Background 1

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
5 Testing the IID Assumption	n	Formatted: Small caps
has the same probability distribution ndependent. The IID assumption sign the IID assumption does not hold, i.e.	<i>independent and identically distributed</i> (IID) if each sample on as every other sample, and all samples are mutually nificantly simplifies the process of entropy estimation. When ., the samples are either not identically distributed or are not estimating entropy is more difficult and requires different	Deleted: considered to be
ID (see Section 3.1.2). These tests	hat are designed to find evidence that the samples are not IID samples are non-IID, then it is assumed that the samples are ake the sequence $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, as e values in <i>S</i> are IID. If the hypothesis is rejected by any of to be non-IID.	Deleted: 3.1.1).
Statistical tests based on permutation 5.1. Five additional chi-square tests a	testing (also known as shuffling tests) are given in Section represented in Section 5.2.	
5.1 Permutation Testing		
tatistic is compared to a reference of tandard statistical distribution. The permutations of the dataset, compute esult with a test statistic computed	a statistical hypothesis in which the actual value of the test listribution that is inferred from the input data, rather than a general approach of permutation testing is to generate 10 000 ing a test statistic for each permutation and comparing the on the original dataset; the process is listed in Figure 4. This is described in Sections $5.1.1 - 5.1.11$. The shuffle algorithm	Deleted: summarized
<i>Input:</i> $S = (s_1,, s_L)$		
Output: Decision on the IID assumption	tion	
1. For each test <i>i</i>		
1.1. Assign the counters $C_{i,0}$ and	$C_{i,1}$ to zero.	
1.2. Calculate the test statistic 7		Deleted: : denote the result as t_i
2. For $i = 1$ to 10,000	T	Deleted: ,
2.1. Permute <i>S</i> using the Fisher	Yates shuffle algorithm.	
2.2. For each test <i>i</i>		
	tistic \underline{T} on the permuted data	Deleted: : denote the result as <i>t</i> /.
Carearate the test sta		

Deleted: t'=t

Deleted: of

3. If $((C_{i,0}+C_{i,1}\leq 5)$ or $(C_{i,0}\geq 9995))$ for any *i*, reject the IID assumption; else, assume that the noise source outputs are IID.

Figure 4 Generic Structure <u>for</u> Permutation Testing

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
A	Used for Random Bit Generation		
If the samples are IID, permuting the dataset is no significantly. In particular, the original dataset a from the same distribution; therefore, their test st test statistics are expected to occur infrequently original and permuted test statistics may be sign used to find the ranking of the original test statist a statistic for the original dataset <u>fits</u> within an values for the counters suggest that the data sam	USED FOR RANDOM BIT GENERATION at expected to change the value of the test statistics and permuted datasets are expected to be drawn tatistics should be similar. Unusually high or low v. However, if the samples are not IID, then the ificantly different. The counters $C_{i,0}$ and $C_{i,1}$ are ics among the permuted test statistics (i.e., where ordered list of the permuted datasets). Extreme ples are not IID. If the sum of $C_{i,0}$ and $C_{i,1}$ is less a very high rank; conversely, if $C_{i,0}$ is greater than		Deleted: [2 Drait] Formatted: Small caps Formatted: Small caps
$\underline{C}_{i,1}$ are calculated using a type I error, probability		\langle	Deleted: C _i
assumption. Some of the tests (e.g., the comp patterns of particular values (for example, strin would be expected by chance if the samples wer number of directional runs test and the runs bas	e IID), whereas some of the other tests (e.g., the sed on the median test) focus on the association mples in order to find an indication of a trend or		(Formatted: Not Superscript/ Subscript
<i>Output:</i> Shuffled $S = (s_1, \ldots, s_L)$			
 for <i>i</i> from <i>L</i> downto 1 do a. Generate a random integer <i>j</i> such that 	at $1 \le j \le i$.		Formatted: Indent: Left: 0", First line: 0", Space After: 0 pt, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0"
b. Swap s_j and s_{i_j}		MM	Deleted: =
Figure 5 Pseudo-code of	the Fisher-Yates Shuffle		Deleted: ¶ While (<i>i</i> >
The tests are applicable to both binary and non-b			Formatted: Not Expanded by / Condensed by
	the set A), significantly affects the distribution of	V W	Deleted:)
the test statistics, and thus the type I error. For			Deleted: is uniformly distributed between 0 and
applied to the input data, when the input is binary	y, i.e., $k = 2$.		Deleted: ¶ <i>i</i> = <i>i</i> - 1
• Conversion I partitions the sequences into	eight-bit non-overlapping blocks, and counts the	N	Deleted: For
number of ones in each block. Zeroes are bits. For example, let the 20-bit input be	appended when the last block has less than eight (1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,1). The first four and six ones, respectively. The last block,		Deleted: 8 Deleted: 8
calculates the integer value of each b (1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1). T	is into <u>eight</u> -bit non-overlapping blocks, and block. For example, let the input message be the integer values of the first two blocks are 142, last block has less than <u>eight</u> bits. Then, the last		Deleted: 8 Deleted: 8 Deleted: 8

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP-800-90B

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
Descriptions of the individual tests will prov	vide guidance on when to use each of these conversions.	Formatted: Small caps
5.1.1 Excursion Test Statistic		
	For the running sum of sample values deviates from its Given $S = (s_1,, s_L)$, the test statistic T is the largest d as follows:	
1. Calculate the average of the sample	values, i.e., $\bar{X} = (s_1 + s_2 + + s_L) / L$	
2. For $i = 1$ to L		
Calculate $d_i = \sum_{j=1}^i s_j - i $	$\times \overline{X}$.	
3. $T = \max(d_1,, d_L).$		
	2, 15, 4, 10, 9). The average of the sample values is 8, 1; $d_3 = (2+15+4) - (3\times8) = 3$; $d_4 = (2+15+4+10) - (3\times8) = 3$	
$(4 \times 8) = 1$; and $d_5 = (2+15+4+10+9) - (5 \times 8) $	$ =0. \text{ Then, } T_{\underline{=}} \max(6, 1, 3, 1, 0) = 6.$	Deleted: =
Handling <u>binary</u> data: The test can be app are required.	lied to binary data, and no additional conversion steps	Deleted: Binary
5.1.2 Number of Directional Runs		
This test statistic determines the number consecutive samples. Given $S = (s_1, \dots, s_L)$,	er of runs constructed using the relations between the test statistic T_{r} is calculated as follows:	Deleted: ,,
1. Construct the sequence $S' = (s'_1,, s'_n)$		Deleted: Formatted: Font: Italic
	$= \begin{cases} -1, & \text{if } s_i > s_{i+1} \\ +1, & \text{if } s_i \le s_{i+1} \end{cases}$	
for $i = 1,, L-1$.		
2. The test statistic T is the number of	runs in <i>S'</i> .	
	2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then $S' = (+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, $	
Handling binary data: To test binary input	data, first apply Conversion I to the input sequence.	Deleted: Binary
5.1.3 Length of Directional Runs		
This test statistic determines the length of t consecutive samples. Given $S = (s_1,, s_L)$,	he longest run constructed using the relations between the test statistic T is calculated as follows:	
1. Construct the sequence $S' = (s'_1,, s'_n)$	S_{L-1}^{\prime}), where	
	31	

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

l

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

$$s'_i = \begin{cases} -1, & \text{if } s_i > s_{i+1} \\ +1, & \text{if } s_i \le s_{i+1} \end{cases}$$

for *i* =1, ..., *L*-1.

2. The test statistic T is the length of the longest run in S'.

Example 3: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S' = (+1, +1, +1, +1, +1, +1, +1, +1, -1, -1, -1, +1, +1). There are three runs: (+1, +1, +1, +1, +1, +1), (-1, -1) and (+1, +1), so T = 6.

Handling binary data: To test binary input data, first apply Conversion I to the input sequence.

5.1.4 Number of Increases and Decreases

This test statistic determines the maximum number of increases or decreases between consecutive sample values. Given $S = (s_1, ..., s_L)$, the test statistic *T* is calculated as follows:

1. Construct the sequence $S' = (s'_1, \dots, s'_{L-1})$, where

$$s'_{i} = \begin{cases} -1, & \text{if } s_{i} > s_{i+1} \\ +1, & \text{if } s_{i} \le s_{i+1} \end{cases}$$

for *i* = 1, …, *L*-1.

2. Calculate the number of -1's and +1's in S'; the test statistic T is the maximum of these numbers, i.e., $T = \max$ (number of -1's, number of +1's).

Example 4: Let the input sequence be S = (2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4); then S' = (+1, +1, +1, +1, +1, +1, +1, +1, -1, -1, +1, +1). There are eight +1's and two -1's in S', so $T = \max$ (number of +1s, number of -1s) = max (8, 2) = 8.

Handling binary data: To test binary input data, first apply the Conversion I to the input sequence.

5.1.5 Number of Runs Based on the Median

This test statistic determines the number of runs that are constructed with respect to the median of the input data. Given $S = (s_1, ..., s_L)$, the test statistic *T* is calculated as follows:

- 1. Find the median \tilde{X} of $S = (s_1, ..., s_L)$.
- 2. Construct the sequence $S' = (s'_1, ..., s'_L)$ where

$$s'_{i} = \begin{cases} -1, & \text{if } s_{i} < \tilde{X} \\ +1, & \text{if } s_{i} \ge \tilde{X} \end{cases}$$

for *i* =1, ..., *L*.

3. The test statistic T is the number of runs in S'.

Deleted: -	
Formatted: Font: Italic	
Deleted: S'	

• Deleted: Binary

Deleted: (2nd Draft)

Deleted: Binary

Formatted: Small caps Formatted: Small caps

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
Example 5: Let the input sequence be $S = ($ s 9. Then, $S' = (-1, +1, +1, -1, +1, +1, -1)$ There are five runs, hence $T = 5$.	5, 15, 12, 1, 13, 9, 4). The median of the input sequence). The runs are (-1), (+1, +1), (-1), (+1, +1), and (-1).	Formatted: Small caps
<i>Handling <u>binary</u> data:</i> When the input date of the observation of th	a is binary, the median of the input data is assumed to required.	Deleted: Binary
5.1.6 Length of Runs Based on Med	dian	
This test statistic determines the length of nedian of the input data and is calculated a	the longest run that is constructed with respect to the as follows:	
1. Find the median \tilde{X} of $S = (s_1,, s_L)$).	
2. Construct a temporary sequence S'	= (s'_1, \dots, s'_L) from the input sequence $S = (s_1, \dots, s_L)$, as	Deleted: ,,
s'_i :	$= \begin{cases} -1, & \text{if } s_i < \tilde{X} \\ +1, & \text{if } s_i \ge \tilde{X} \end{cases}$	
for $i = 1,, L$.		
3. The test statistic T is the length of t	he longest run <u>in</u> .S'.	
	(5, 15, 12, 1, 13, 9, 4). The median for this data subset). The runs are (-1), (+1, +1), (-1), (+1, +1), and (-1). =2.	
<i>Handling <u>binary</u> data:</i> When the input date 0.5. No additional conversion steps are	a is binary, the median of the input data is assumed to required.	Deleted: Binary
5.1.7 Average Collision Test Statist	ic	
The average collision test statistic counts the sound. The average collision test statistic	ne number of successive sample values until a duplicate c is calculated as follows:	
1. Let C be a list of the number of the value in the input sequence $S = (s_{\downarrow})$	samples observed to find two occurrences of the same, <i>s</i> _L). <i>C</i> is initially empty.	Deleted:,
2. Let $i = 1$.		
3. While $i < L$		
a. Find the smallest <i>j</i> such that (<i>s</i> exists, break out of the while lo	$s_{i_1,\ldots,i_k} s_{i+j-1}$) contains two identical values. If no such $j \leftarrow 0$ op.	Formatted: Indent: Left: 0.5", Tab stops: Not at 1" Deleted: ,,
b. Add j to the list C .	-	
c. $i = i + j_{\mathbf{r}}$		Deleted: +1
4. The test statistic T is the average of	fall values in the list C.	
<i>Example 7:</i> Let the input sequence be $S = 1$	(2, 1, 1, 2, 0, 1, 0, 1, 1, 2). The first collision occurs for the same. 3 is added to the list <i>C</i> . Then, the first three	

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION	Deleted: (2 nd Draft)
A	USED FOR RANDOM DIT GENERATION	Formatted: Small caps
occurs for $j = 4$. The third sequence to	uence to be examined is $(2, 0, 1, 0, 1, 1, 2)$. The collision be examined is $(1,1,2)$, and the collision occurs for $j = 2$. ence (2). Hence, $C = [3,4,2]$. The average of the values in	(Formatted: Small caps
Handling binary data: To test binary in	put data, first apply Conversion II to the input sequence.	Deleted: Binary
5.1.8 Maximum Collision Test St	atistic	
	counts the number of successive sample values until a sion test statistic is calculated as follows:	
1. Let <i>C</i> be a list of the number of s in the input sequence $S = (S_{1_{p_{1}},\ldots,p_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_$	amples observed to find two occurrences of the same value s_{L} . <i>C</i> is initially empty.	Deleted: ,,
2. Let $i = 1$.		
3. While $i < L$		
a. Find the smallest <i>i</i> such t	that $(s_i,, s_{i+i-1})$ contains two identical values. If no such j	Formatted: Font: 12 pt
exists, break out of the w		Formatted: Font: 12 pt
b. Add j to the list C .		Formatted: List Paragraph, Numbered + Level: 2 + Numbering Style: a, b, c, + Start at: 1 + Alignment: Left + Aligned at: 0.75" + Indent at: 1"
c. $i=i+j_{\checkmark}$		Deleted: +1
4. The test statistic T is the maximum		Formatted: Font: 12 pt
<i>Example 8:</i> Let the input data be $(2, 1, 1)$ 7. $T = \max(3, 4, 2) = 4$.	1, 2, 0, 1, 0, 1, 1, 2). $C = [3,4,2]$ is computed as in Example	
Handling <i>binary</i> data: To test binary in	put data, first apply Conversion II to the input sequence.	Deleted: Binary
5.1.9 Periodicity Test Statistic		
	he number of periodic structures in the data. The test takes , and the test statistic T is calculated as follows:	
1. Initialize <i>T</i> to zero.		
2. For $i = 1$ to $L - p$		
If $(s_i = s_{i+p})$, increment T by	one.	
<i>Example 9:</i> Let the input data be $(2, 1, values of i (1, 2, 4, 5 and 6), T = 5.$	2, 1, 0, 1, 0, 1, 1, 2), and let $p = 2$. Since $s_i = s_{i+p}$ for five	
Handling <i>binary data</i> : To test binary in	put data, first apply Conversion I to the input sequence.	Deleted: Binary
The test is repeated for five different va	lues of <i>p</i> : 1, 2, 8, 16, and 32.	

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
T	Used For Random Bit Generation	Formatted: Small caps
5.1.10 Covariance Test Statistic		Formatted: Small caps
The covariance test measures the streng L as input. The test statistic is calculated	gth of the lagged correlation. The test takes a lag value $p < d$ as follows:	
1. Initialize <i>T</i> to zero.		
2. For $i = 1$ to $L - p$		
$T = T + (s_i \times s_{i+p}).$		Deleted:)
<i>Example 10:</i> Let the input data be $(5, 2)$ $(2 \times 10) + (6 \times 12) + (10 \times 3) + (12 \times 1) =$	$(5, 6, 10, 12, 3, 1)$, and let p be 2. T is calculated as $(5 \times 6) + 164$.	
Handling binary data: To test binary in	put data, first apply Conversion I to the input sequence.	Deleted: Binary
The test is repeated for five different va	alues of <i>p</i> : 1, 2, 8, 16, and 32.	
5.1.11 Compression Test Statistic	<u>c</u>	Deleted: Statistics
string, particularly involving common test statistic for the input data is the length	ns are well adapted for removing redundancy in a character y recurring subsequences of characters. The compression gth of that data subset after the samples are encoded into a eral-purpose compression algorithm. The compression test	
	acter string containing a list of values separated by a single 0, 0, 15)" becomes "144 21 139 0 0 15".	
2. Compress the character string w	vith the bzip2 compression algorithm provided in [BZ2].	
3. T is the length of the compressed	d string, in bytes.	
Handling <u>binary</u> data: The test can be a	pplied directly to binary data, with no conversion required.	Deleted: Binary
5.2 Additional Chi-square Statis	tical Tests	
goodness-of-fit. The independence tes between successive samples in the (ent non-binary data and Section 5.2.3 for b failure to follow the same distribution in	square statistical procedures to test independence and the attempt to discover dependencies in the probabilities tire) sequence submitted for testing (see Section 5.2.1 for pinary data); the goodness-of-fit tests attempt to discover a in ten data subsets produced from the (entire) input sequence for non-binary data and Section 5.2.4 for binary data). The stest is provided in Section 5.2.5.	
5.2.1 Testing Independence for N	Non-Binary Data	
Given the input $S = (s_1,, s_L)$, where $s_i \in$ to determine the number of bins <u><i>Phin</i></u> near	$A = \{x_1,, x_k\}$, the following steps are initially performed eded for the chi-square tests.	Deleted: q
	35	

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

I

l

I

I

RECOMMENDATION FOR THE ENTROPY SOURCES Used FOR RANDOM BIT GENERATION

- 1. Find the proportion p_i of each x_i in S, i.e., $p_i = \frac{\text{number of } x_i \text{ in } S}{L}$. Calculate the expected number of occurrences of each possible pair (z_i, z_j) in S, as $e_{i,j} = p_i p_j L/2_{-}$
- 2. Allocate the possible (z_i, z_j) pairs, starting from the smallest $e_{i,j}$, into bins such that the expected value of each bin is at least <u>five</u>. The expected value of a bin is equal to the sum of the $e_{i,j}$ values of the pairs that are included in the bin. After allocating all pairs, if the expected value of the last bin is less than <u>five</u>, merge the last two bins. Let <u>pbin</u> be the number of bins constructed <u>using</u> this procedure.

After constructing the bins, the Chi-square test is executed as follows:

- 1. Let *o* be a list of n_{bin} counts, each initialized to 0. For j=1 to *L*-1: *a*. If the pair (s_{j_k}, s_{j_k+1}) is in bin *i*, increment o_{i_k} by 1_{i_k} *b*. Let j = j+2.
- 2. The test statistic is calculated as $T = \sum_{i=1}^{n_{bin}} \frac{(o_i E(Bin_i))^2}{E(Bin_i)}$. The test fails if *T* is greater than the critical value of the Chi-square test statistic with $\frac{(n_{bin}-1)-(k-1)}{E(Bin_i)}$. The test fails if *T* is greater than the probability of type I error is chosen as 0.001. If the value of degrees of freedom is less than one, do not apply the test.

$(z_{i,}$ $z_{j})$	(1,1)	(1,3)	(3,1)	(1,2)	(2,1)	(3,3)	(2,3)	(3,2)	(2,2)
$e_{i,j}$	<u>2.21</u>	<u>3.99</u>	<u>3.99</u>	4.31	<u>4.31</u>	7.22	<u>7.79</u>	7.79	8.41

The pairs can be allocated into $\underline{p_{bin}} = 6$ bins.

Bin	Pairs	$E(Bin_i)$	-
1	(1,1), (1,3)	<u>6.2</u>	•
2	<u>(3,1), (1,2)</u>	8 <u>3</u>	
<u>3</u>	<u>(2,1), (</u> 3,3)	<u>11.53</u>	
4	(2,3)	<u>7.79</u>	4
5	(3,2)	<u>7.79</u>	
6	(2,2)	<u>8.41</u>	

The frequencies for the bins are calculated as 7.6, 10, 8.12, and 7 respectively, and the test <u>statistic</u> is calculated as 3.46. The value of the degrees of freedom is 3 (= 6-3). The hypothesis is not rejected, since the test <u>statistic</u> is less than the critical value 16.266.

Formatted [75] Formatted [76] Deleted: 5		
Formatted	Deleted: (2 nd Draft)	
Deleted: $(L - 1)$. [77] Deleted: 5 Deleted: 5 Deleted: 5ive, merge the last two bins. Let q has be the [78] Deleted: For Formatted Formatted [79] Deleted: 1. (5 5	>	[75]
Deleted: 5 Deleted: 5ive, merge the last two bins. Let qsue be the [78] Deleted: For Formatted [79] Deleted: 1, 1 ≤ j ≤ L-1, count the number of observed value[60] Formatted [82] Deleted: ≤ i ≤ q). Formatted [82] Deleted: S = i ≤ q). Formatted [82] Deleted: S = i ≤ q). Formatted [83] Formatted [84] Formatted [85] Deleted: g- Deleted: sample spacelphabet consists of k== 3 values, [1686] Formatted [87] Formatted Table [88] Formatted Table [88] Formatted Table [89] Deleted: 8.61 Deleted: 15.58 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 19.58 Deleted: 15.58 Deleted: 19.59 Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted <	>	[76]
Deleted: 5ive, merge the last two bins. Let qbw be the, [78] Deleted: For Formatted [79] Deleted:), $1 \le j \le L$ -1, count the number of observed value [60] Formatted [81] Deleted: . (Formatted [82] Deleted: $\le i \le q$). Formatted [82] Formatted [83] Formatted [83] Formatted [83] Pormatted [83] Pormatted [83] Pormatted [83] Deleted: $\sum I_{n=1}^{q} \frac{(m_n - E(B(m_1))^2}{(m_1)^2}$. Deleted: sumple spacelphabet consists of $k = = 3$ values, [168] Formatted [87] Formatted [87] Formatted [87] Deleted: 3.01 Deleted: 3.01 Deleted: 4.41 Deleted: 4.41 Deleted: 7.98 Deleted: 8.61 Deleted: 8.61 Deleted: 8.61 Deleted: 15.58 Deleted: 16.81 Deleted: 16.81 Deleted: 16.91 Pormatted [90] Formatted [91]	>	[77]
Deleted: For Formatted	~	
Formatted [79]Deleted:), $1 \le j \le L-1$, count the number of observed values[60]Formatted [81]Deleted: . (Formatted [82]Deleted: $\le i \le q$).Formatted [83]Formatted [83]Formatted [83]Formatted [83]Deleted: $\ge i \le q$).Deleted: $= 1 (a_1 - f(a)(a_1))^2$.Deleted: $a_{1-1} (a_{1-1}(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)($	Deleted: 5ive, merge the last two bins. Let q.	bin be the [78]
In [13]Deleted:), $1 \le j \le L-1$, count the number of observed values[60]Formatted [81]Deleted: . (Formatted [82]Deleted: $\le i \le q$).Formatted [83]Formatted [83]Formatted [83]Deleted: $\sum_{q=1}^{q} \frac{(\alpha_1 - E(B(m_1))^2}{E(B(m_1))^2}$.Deleted: $\sum_{q=1}^{q} \frac{(\alpha_1 - E(B(m_1))^2}{E(B(m_1))^2}$	Deleted: For	
Formatted	~	
Deleted: . (Formatted [82] Deleted: $\leq i \leq q$). Formatted [83] Formatted: Bullets and Numbering [84] Formatted [85] Deleted: $\sum_{i=1}^{d} \frac{(n_i - E(lin_{i+1}))^2}{E(lin_{i+1})^2}$. Deleted: sample spacelphabet consists of $k = = 3$ values, [186] Formatted [87] Formatted Table [87] Deleted: 4.41 Deleted: [88] Deleted: 7.98 Deleted: [88] Deleted: 7.98 Deleted: [89] Deleted: 15.58 Deleted: [89] Deleted: 15.58 Deleted: [90] Formatted [90] Formatted [90] Formatted [92] Deleted: 12.39 Formatted [92] Formatted [92] Formatted [92] Deleted: 2 [94] Formatted [97] Deleted: 1	Deleted:), $1 \le j \le L-1$, count the number of o	bserved values801
Formatted	Formatted	[81]
Deleted: $\leq i \leq q$). Formatted	Deleted: , (
Formatted	Formatted	[82]
Formatted: Bullets and Numbering [64] Formatted [65] Deleted: $\sum_{i=1}^{q} \frac{(a_i - E(Bin_i))^2}{E(Bin_i)}$. [68] Deleted: ample spacelphabet consists of $k = = 3$ values, [168] Formatted Formatted [87] Deleted: 14.41 Deleted: 16.81 Deleted: 7.98 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 12.39 Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted [92] Formatted [93] Deleted: 12.39 Formatted [92] Formatted [93] Deleted: 12.39 Formatted [93] Formatted [93] Deleted: 12.39 Formatted [93] <t< td=""><td>Deleted: $\leq i \leq q$).</td><td></td></t<>	Deleted: $\leq i \leq q$).	
Formatted: Bullets and Numbering	Formatted	[83]
Formatted [85] Deleted: $\sum_{l=1}^{q} \frac{(v_l - E(Bin_l))^2}{E(Bin_l)^2}$. Deleted: ample spacelphabet consists of k== 3 values.[1[66] Formatted [87] Formatted Table [88] Formatted Table [88] Formatted Table [89] Deleted: 4.41 Deleted: 7.98 Deleted: 7.98 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 12.39 Formatted Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted Formatted [92] Deleted: 2 [94] Formatted [92] Deleted: 4 [93] Deleted: 5 [94] Formatted [95] Formatted [94] Formatted [95] Formatted [96] Formatted [97] Deleted: 4 [98] Formatted [101] <td>Formatted: Bullets and Numbering</td> <td></td>	Formatted: Bullets and Numbering	
Deleted: $\sum_{l=1}^{q} \frac{(v_l - E(Bin_l))^2}{E(Bin_l)}$ Deleted: q Deleted: sample spacelphabet consists of k== 3 values.[1[96] Formatted [87] Formatted Table [88] Formatted [89] Deleted: 4.41 Deleted: 7.98 Deleted: 7.98 Deleted: 8.61 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 12.39 Formatted [90] Formatted [92] Deleted: 12.39 Formatted [92] Deleted: 1 [94] Formatted [95] Formatted [96] Formatted [97] Deleted: 1.44 Formatted [97] Deleted: 1 [98] Formatted [100] Deleted: 1 [101]	Formatted	
Deleted: q- Deleted: sample spacelphabet consists of k== 3 values, {[g8] Formatted [87] Formatted Table [87] Formatted Table [88] Formatted [89] Deleted: 4.41	Deleted: $\sum_{i=1}^{q} \frac{(o_i - E(Bin_i))^2}{(o_i - E(Bin_i))^2}$	
Deleted: sample spacelphabet consists of k== 3 values, [1[68] Formatted	>	
Formatted [87] Formatted [88] Formatted [89] Deleted: 4.41 [89] Deleted: 7.98 [89] Deleted: 7.98 [89] Deleted: 7.98 [89] Deleted: 7.98 [89] Deleted: 8.61 [89] Deleted: 8.61 [89] Deleted: 15.58 [90] Deleted: 15.58 [90] Formatted [91] Formatted [92] Deleted: 12.39 [94] Formatted [92] Formatted [92] Deleted: 2 [94] Formatted [97] Deleted: 4 [98] Formatted [98] Formatted [100] Deleted: 14.44 [102]		
Formatted Table [88] Formatted [89] Deleted: 4.41 [89] Deleted: 7.98 [89] Deleted: 7.98 [80] Deleted: 8.61 [80] Deleted: 8.61 [80] Deleted: 15.58 [90] Pormatted [90] Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 [90] Formatted [92] Deleted: 2 [94] Formatted [93] Deleted: 12.39 [94] Formatted [93] Deleted: 4 [94] Formatted [93] Deleted: 12.39 [94] Formatted [96] Formatted [97] Deleted: 12.39 [96] Formatted [97] Deleted: 12.39 [96] Formatted [97] Deleted: 4 [98] Formatted [100]		= 3 values [1[,86]
Image: Second	<u> </u>	[87]
Deleted: 4.41 Deleted: 7.98 Deleted: 7.98 Deleted: 8.61 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 16.81 Deleted: 9 = 8 Formatted [90] Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [95] Formatted [97] Deleted: 4 [98] Formatted [97] Deleted: 61 Deleted: 4 [98] Formatted [99] Formatted [90] Formatted [100] Deleted: 4 [101] Deleted: 14.44 Formatted [102] Formatted [103] Deleted: 7 Formatted [105] Formatted [107] Deleted: 15.58 Formatted [107] Deleted: 8 Formatted [108] Formatted [108] Formatted [109]	Formatted Table	[88]
Deleted: 7.98 Deleted: 7.98 Deleted: 8.61 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 12.39 Formatted Formatted	Formatted	[89]
Deleted: 7.98 Deleted: 8.61 Deleted: 8.61 Deleted: 14.44 Deleted: 15.58 Deleted: 16.81 Deleted: 16.81 Deleted: 12.39 Formatted Formatted	Deleted: 4.41	
Deleted: 8.61 Deleted: 8.61 Deleted: 8.61 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 16.81 Deleted: 12.39 Formatted Formatted	Deleted: 7.98	
Deleted: 8.61 Deleted: 14.44 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 16.81 Deleted: 12.39 Formatted Formatted	Deleted: 7.98	
Deleted: 14.44 Deleted: 15.58 Deleted: 15.58 Deleted: 16.81 Formatted	Deleted: 8.61	
Deleted: 15.58 Deleted: 15.58 Deleted: 15.58 Formatted formatted	Deleted: 8.61	
Deleted: 15.58 Deleted: 16.81 Deleted: q = 8 Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [97] Deleted: 6 [97] Deleted: 61 [98] Formatted [99] Formatted [99] Formatted [100] Deleted: 14.44 [100] Deleted: 14.44 [101] Deleted: 6 [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [104] Deleted: 7 [104] Formatted [105] Formatted [105] Formatted [107	Deleted: 14.44	
Deleted: 16.81 Deleted: q = 8 Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 Formatted Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [96] Formatted [97] Deleted: 6 Deleted: 6 Formatted [97] Deleted: 4 [97] Deleted: 6 [100] Formatted [101] Deleted: 14.44 [100] Formatted [101] Deleted: 6 [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [104] Deleted: 7 [104] Formatted [105] Formatted [105] Formatted	Deleted: 15.58	
Deleted: q = 8 Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 [93] Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [96] Formatted [97] Deleted: 61 [97] Deleted: 61 [98] Formatted [97] Deleted: 4 [98] Formatted [101] Deleted: 6 [100] Formatted [101] Deleted: 14.44 [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [104] Deleted: 15.58 [104] Formatted [105] Formatted [105]	Deleted: 15.58	
Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 [93] Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [97] Deleted: 6 [97] Deleted: 4 [97] Deleted: 4 [97] Deleted: 6 [100] Formatted [97] Formatted [101] Deleted: 4 [98] Formatted [101] Deleted: 14.44 [100] Formatted [101] Deleted: 6 [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [104] Deleted: 15.58 [104] Deleted: 15.58 [105] Formatted [105] Deleted: 15.58 [106]	Deleted: 16.81	
Formatted [90] Formatted [91] Formatted [92] Deleted: 12.39 [93] Formatted [93] Deleted: 2 [94] Formatted [95] Formatted [95] Formatted [97] Deleted: 6 [97] Deleted: 4 [97] Deleted: 4 [97] Deleted: 6 [100] Formatted [97] Formatted [101] Deleted: 4 [98] Formatted [101] Deleted: 14.44 [100] Formatted [101] Deleted: 6 [102] Formatted [102] Formatted [102] Formatted [102] Formatted [102] Formatted [104] Deleted: 15.58 [104] Deleted: 15.58 [105] Formatted [105] Deleted: 15.58 [106]	Deleted: $q = 8$	
Image: Second	>	
Image: Constraint of the system of the sy		
Deleted: 12.39 Formatted Formatted	>	
Formatted	·	[92]
Deleted: 2		[02]
Formatted [95] Formatted [96] Formatted [97] Deleted: 61 Deleted: 4 Deleted: 4 [98] Formatted [99] Formatted [99] Formatted [100] Deleted: 14.44 Formatted Formatted [101] Deleted: 6 Formatted Formatted [102] Formatted [102] Formatted [102] Formatted [103] Deleted: 15.58 Formatted Formatted [105] Formatted [105] Formatted [107] Deleted: 15.58 Formatted Formatted [107] Deleted: 8 Formatted Formatted [107] Deleted: 8 Formatted Formatted [108] Formatted [109]	>	
Formatted	>	
Formatted [97] Deleted: 61 [98] Formatted [98] Formatted [99] Formatted [100] Deleted: 14.44 [100] Deleted: 6 [101] Formatted [102] Formatted [102] Formatted [102] Formatted [103] Deleted: 15.58 [104] Deleted: 7 [105] Formatted [105] Formatted [105] Formatted [105] Formatted [105] Formatted [105] Formatted [107] Deleted: 8 [107] Deleted: 8 [108] Formatted [108]	<u> </u>	[95]
Deleted: 61 Deleted: 4 Formatted	>	
Deleted: 4 [98] Formatted [99] Formatted [100] Deleted: 14.44	<u>}</u>	[97]
Formatted [99] Formatted [100] Deleted: 14.44 [101] Deleted: 6 [102] Formatted [102] Formatted [102] Formatted [103] Deleted: 15.58 [104] Deleted: 7 [105] Formatted [105] Formatted [105] Deleted: 15.58 [106] Deleted: 15.58 [107] Deleted: 8 [107] Formatted [107] Deleted: 8 [108] Formatted [108] Formatted [109]		<
Formatted [100] Deleted: 14.44 [101] Formatted [101] Deleted: 6 [102] Formatted [103] Deleted: 15.58 [103] Deleted: 7 [104] Formatted [105] Formatted [105] Formatted [106] Deleted: 15.58 [106] Deleted: 8 [107] Deleted: 8 [108] Formatted [108] Formatted [109]		[98]
Deleted: 14.44 Formatted Deleted: 6 Formatted Formatted	<u> </u>	[99]
Formatted [101] Deleted: 6 [102] Formatted [102] Formatted [103] Deleted: 15.58 [104] Deleted: 7 [105] Formatted [105] Formatted [106] Deleted: 15.58 [107] Deleted: 8 [107] Formatted [107] Deleted: 8 [108] Formatted [108] Formatted [109]	>	[100]
Deleted: 6 Formatted Formatted [102] Formatted [103] Deleted: 15.58 Formatted [104] Deleted: 7 Formatted [105] Formatted [106] Deleted: 15.58 Formatted [107] Deleted: 8 Formatted [107] Deleted: 8 Formatted [108] Formatted [109]	Deleted: 14.44	
Formatted [102] Formatted [103] Deleted: 15.58 [104] Formatted [104] Deleted: 7 [105] Formatted [105] Formatted [106] Deleted: 15.58 [107] Poleted: 8 [107] Deleted: 8 [108] Formatted [108] Formatted [108] Formatted [108]	Formatted	[101]
Formatted [102] Deleted: 15.58 [104] Formatted [104] Deleted: 7 [105] Formatted [106] Deleted: 15.58 [107] Deleted: 8 [108] Formatted [108] Formatted [109]	Deleted: 6	
Deleted: 15.58 Formatted Deleted: 7 Formatted Formatted	Formatted	[102]
Formatted [104] Deleted: 7 [105] Formatted [105] Formatted [106] Deleted: 15.58 [107] Deleted: 8 [108] Formatted [108] Formatted [108] Formatted [108]	Formatted	[103]
Deleted: 7 Formatted [105] Formatted [106] Deleted: 15.58 Formatted [107] Deleted: 8 Formatted [108] Formatted [108] Formatted [108]	Deleted: 15.58	
Deleted: 7 Formatted [105] Formatted [106] Deleted: 15.58 Formatted [107] Deleted: 8 Formatted [108] Formatted [108]	Formatted	[104]
Formatted [106] Deleted: 15.58 [107] Formatted [107] Deleted: 8 [108] Formatted [108] Formatted [109]	Deleted: 7	
Formatted [106] Deleted: 15.58 [107] Formatted [107] Deleted: 8 [108] Formatted [108] Formatted [109]	Formatted	[105]
Deleted: 15.58 Formatted [107] Deleted: 8 Formatted [108] Formatted [109]	Formatted	
Formatted [107] Deleted: 8 [108] Formatted [108] Formatted [109]	<u> </u>	[100]
Deleted: 8 Formatted [108] Formatted [109]	>	[107]
Formatted [108] Formatted [109]		[10/]
Formatted [109]	>	54002
	>	
	Deleted: 16.81	[109]

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
A	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
5.2.2 Testing Goodness-of-fit	for Non-Binary Data	Formatted: Small caps
5.2.2 resting Goodness-or-in	tiol <u>Inon-Dinary Data</u>	Deleted: non-binary data
The test checks whether the distrib	pution of samples is identical for different parts of the input.	Deleted: are
	The $s_i \in A = \{x_1, \dots, x_k\}$, perform the following steps to calculate	
the number of bins $\underline{n_{bin}}$ for the test.		Deleted: q
	ences of x_i in the entire dataset S , and let $e_i = c_i/10$, for $1 \le i$ en because S will be partitioned into ten data subsets.	
 Let <i>List</i>[<i>i</i>] be the sample value <i>e_i</i>; <i>List</i>[2] has the next smalles 	with the i^{th} smallest e_i (e.g., $List[1]$ has the smallest value for t value, etc.)	
a bin until the sum of the e_i fo	the sample values into bins. Assign consecutive <i>List</i> [<i>i</i>] values to r those binned items is at least five, then begin assigning the next bin. If the expected value of the last bin is less than five,	Deleted: values
	be the number of bins constructed after this procedure.	Deleted: q
	of sample values in Bin <i>i</i> ; E_i is the sum of the e_i for the listed if Bin 1 contains (x_1 , x_{10} and x_{50}), then $E_1 = e_1 + e_{10} + e_{50}$.	
Example 12: Let the number of dist	tinct sample values k be 4; and let $c_1 = 43$, $c_2 = 55$, $c_3 = 52$ and	Deleted: =
	nput sequence into 10 parts, the expected value of each sample	Deleted: =
	and $e_4 = 1$. The sample list starting with the smallest expected	Deleted: =
	. The first bin contains sample 4 and 1, and the expected value	Deleted: =
	second bin contains sample <u>3</u> , and the last bin contains sample	Deleted: =
2. Since the expected value of the la	ast bin is greater than five, no additional merging is necessary.	Deleted: =
Given <i>n_{bin}</i> , <i>E_i</i> and list of samples f	or each bin, the chi-square goodness-of-fit test is executed as	Deleted: =
follows:		Deleted: 2
		Deleted: 3
	n-overlapping sequences of length $\left \frac{L}{10}\right $, where $S_d =$	Deleted: The
$(s_{d L/10 +1}, \dots, s_{(d+1) L/10 })$ for	$d = 0, \dots, 9$. If L is not a multiple of 10, the remaining <u>samples</u>	Deleted: bits

2. T = 0.

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

3. For d = 0 to 9

are not used.

- 3.1. For i = 1 to <u>*nbin*</u>
 - 3.1.1. Let o_i be the <u>total</u> number of <u>times the samples in</u> Bin *i* <u>appear</u> in $S_{d,r}$

3.1.2.
$$T = T + \frac{(o_{i-} E_i)^2}{E_i}$$

The test fails if the test statistic *T* is greater than the critical value of chi-square with $9(\underline{p_{bin}}-1)$ degrees of freedom when the type I error is chosen as 0.001.

5.2.3 Testing Independence for Binary Data

This test checks the independence assumption for binary data. A chi-square test for independence between adjacent bits could be used, but its power is limited, due to the small output space (i.e., the use of binary inputs). A more powerful check can be achieved by comparing the frequencies

Deleted: q	
Deleted:	
Formatted: Font: Not Ita	lic
Deleted: sample value	s from
Deleted: the data subs	set
Deleted:	
Deleted: q	

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
successive bit, i.e., assuming that the then the expected probabilities of m for the whole dataset, and a chi-squa	tes that are calculated by multiplying the probabilities of each e samples are independent. If nearby bits are not independent, -bit tuples derived from their bit probabilities will be biased ire test statistic will be much larger than expected.	Formatted: Small caps
Siven the input binary data $5 - (s_1, .)$	\dots, s_L), the length of the tuples, <i>m</i> , is determined as follows:	
1. Let p_0 and p_1 be the proportion	on of zeroes and ones in <i>S</i> , respectively, i.e., $p_0 = \frac{\# 0/\sin S}{V}$,	Deleted: <u>number of zeroes in S</u> L
and $p_1 = \frac{\# 1/s \text{ in } s}{\sqrt{1-s}}$.		Deleted: number of ones
2. Find the maximum integer m	<i>a</i> such that $\min(p_0, p_1)^m \left \frac{L}{m} \right \ge 5$. If <i>m</i> is greater than 11, set s. For example, for $p_0 = 0.14$, $p_1 = 0.86$, and $L = 1000$, $m = 2$.	Deleted: $(p_0)^m > 5/L$ and $(p_1)^m > 5/L$.
m = 11 If m is 1 the test fail	s. For example, for $p_0 = 0.14$, $p_1 = 0.86$, and $L = 1000$, $m = 2$	Deleted: assign
	$\frac{1}{2}$. $\frac{1}$	Deleted: to
The test is applied if $m \ge 2$.		Deleted: the value of <i>m</i> is selected as 3.
1. Initialize T to 0.		
2. Partition S into non-overlapp	<u>bing <i>m</i>-bit blocks, denoted as $B = (B_1, \dots, B_{\lfloor \frac{L}{m} \rfloor})$. If <i>L</i> is not a</u>	
multiple of <i>m</i> , discard the rer	[111]	
3. For each possible <i>m</i> -bit tuple	(a_1, a_2, \dots, a_m)	Deleted: ,,
	of times that the pattern (a_1, a_2, \dots, a_m) occurs in the input \underline{B} .	Deleted:,
b. Let <i>w</i> be the number of		Deleted: sequence <i>S</i> . Note that the tuples are allowed to overlap. For example, the number of times that (1,1,1) occurs
c. Let $e = p_1^w (p_0)^{m-w}$		in (1,1,1,1) is 2. Deleted: ,,
14	m	Deleted: $(L - m + 1)$.
d. $T = T + \frac{(o-e)^2}{e}$.		
The test fails if the test statistic T is go f freedom, when the type I error is	greater than the critical value of chi-square with 2^{m} <u>2</u> degrees chosen as 0.001.	Deleted: -1
5.2.4 Testing Goodness-of-fit	for Binary Data	
data to determine whether the distrib	the number of ones in non-overlapping intervals of the input bution of the ones remains the same throughout the sequence, s_L), the test description is as follows:	
1. Let p be the proportion of one L .	es in <u>the entire sequence</u> S , i.e., $p = (\text{the number of ones in } S)/$	
2. Partition S into ten no	on-overlapping subsets of length $\left \frac{L}{10}\right $, where $S_d =$	Deleted: sub-sequences
$(s_{d[L/10]+1},, s_{(d+1)[L/10]})$ for are discarded.	for $d = 0$,, 9. If <i>L</i> is not a multiple of 10, the remaining bits	Deleted: ,,
3. Initialize T to 0.		
4 Let the expected number of a	<u>teros and</u> ones in each sub-sequence S_d be	Deleted: $e = p \left \frac{L}{10} \right $.
$\frac{1}{2}$		$\mathbf{p}_{cleteu} = \mathbf{p}_{[10]}.$

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
	$e_0 = (1-p) \left\lfloor \frac{L}{10} \right\rfloor,$ $e_1 = p \left\lfloor \frac{L}{10} \right\rfloor,$	(Formatted: Small caps
respectively.	⁰ ¹ ^P [10] [']	Moved (insertion) [11]
5. For $d = 0$ to 9		
a Let a_{2} and a_{3} be the num	ber of zeros and ones in S_{de} respectively.	Deleted: o
	-	Deleted:
$\underline{b. T = T + \frac{(o_0 - e_0)^2}{e_0} + \frac{(o_1 - e_1)^2}{e_1}}_{\bullet}$	<u></u>	Deleted: $<\#>T = T + \frac{(o-e)^2}{e}$.
<i>T</i> is a chi-square random variable with	<u>pine</u> degrees of freedom. The test fails if \underline{T} is larger than	Deleted: 9
the critical value at 0.001, which is 27	<u>87</u> .	Deleted: S
5.2.5 Length of the Longest Repe	noted Substring Test	Deleted: 88
Given the input $S = (s_1,, s_L)$, where s_i 1. Find the proportion p_i of each pos	$\epsilon A = \{x_1,, x_k\},\$ sible input value x_i in S , i.e., $p_i = \frac{\text{number of } x_i \text{ in } S}{L}.$	
2. Calculate the collision probability	as $p_{col} = \sum_{i=1}^{k} p_i^2$.	
3. Find the length of the longest reported least one $i \neq j$, $s_i = s_j$, $s_{i+1} = s_{j+1}$	eated substring W , i.e., find the largest W such that, for at $s_{i+W-1} = s_{j+W-1}$.	Deleted: , ,
4. The number of overlapping subseq of overlapping subsequences is $\binom{L}{2}$	uences of length W in S is $L-W+1$, and the number of pairs $-W+1$.	
5. Let \underline{X} be a binomially distributed	random variable with parameters $N = \binom{L - W + 1}{2}$ and a	Deleted: E
probability of success p_{col}^{W} . Calcu Pr $(X \ge 1) = 1 - Pr (X = 0) = 1 - (1 - 1)$	ate the probability that \underline{X} is greater than or equal to 1, i.e.,	Deleted: p _{col} Deleted: E
-		Deleted: E
The test fails if $\Pr(X \ge 1)$ is less than 0.		Deleted: E
		Deleted: pcol
		Deleted: E

39

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

6 Estimating Min-Entropy

One of the essential requirements of an entropy source is the ability to reliably create random outputs. To ensure that sufficient entropy is input to an RBG construction in SP 800-90C, the amount of entropy produced per noise source sample must be determined. This section describes generic estimation methods that will be used to test the noise source and also the conditioning component, when non-vetted conditioning components are used. It should be noted that the entropy estimation methods described in this section rely on some statistical assumptions that may not hold for all types of noise sources. The methods should not replace in-depth analysis of noise sources, but should be used to support the initial entropy estimate of the submitter (see Requirement 3 in Section 3.2.2). An example noise source analysis is provided in [HaFis15].

Each estimator takes a sequence $S = (s_1, ..., s_L)$ as its input, where each s_i comes from an output space $A = \{x_1, ..., x_k\}$ that is specified by the submitter. The estimators presented in this Recommendation follow a variety of strategies, which cover a range of assumptions about the data. For further information about the theory and origins of these estimators, see Appendix <u>G</u>. The estimators that are to be applied to a sequence depend on whether the data has been determined to be IID or non-IID. For IID data, the min-entropy estimation is determined as specified in Section 6.1, whereas for non-IID data, the procedures in Section 6.2 are used.

The estimators presented in this section work well when the entropy-per-sample is greater than 0.1. For alphabet sizes greater than 256, some of the estimators are not very efficient. Therefore, for efficiency purposes, the method described in Section 6.4 can <u>be</u> used to reduce the <u>alphabet</u> space of the outputs.

6.1 IID Track: Entropy Estimation for IID Data

For sources with IID outputs, the min-entropy estimation is determined using the *most common* value estimate described in Section 6.3.1. It is important to note that <u>this</u> estimate <u>typically</u> provides an overestimation when the samples from the source are not IID^{13} .

6.2 Non-IID Track: Entropy Estimation for Non-IID Data

Many viable noise sources fail to produce IID outputs. Moreover, some sources may have dependencies that are beyond the ability of the tester to address. To derive any utility out of such sources, a diverse and conservative set of entropy tests are required. Testing sequences with dependent values may result in overestimates of entropy. However, a large, diverse battery of estimates minimizes the probability that such a source's entropy is greatly overestimated.

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

-	0.0	 	···	••	

Deleted: H

Deleted

Deleted: sample

Deleted: the

¹³ However, it is possible for this estimate to slightly underestimate the true min-entropy. It is believed that this underestimation is likely to not exceed one bit because of the relationship between min-entropy and the expected guessing work derived in Appendix D. Of course, such an underestimate would not indicate that a guessing attack that ignores dependencies could be less costly than one that takes the dependencies into account. As an example, consider a data sample consisting of pairs of bytes generated from the joint distribution on two bytes X and Y, each having possible values A and B, where Pr(X=A, Y=A)=0.104, Pr(X=A, Y=B)=0.325. The min-entropy according to the MCV estimator is 0.712, while the true min-entropy is 0.795.

NIST SP 800-90B	Deleted: (2 nd Draft)
Used for Random Bit Generation	Formatted: Small caps
For non-IID data, the following estimators shall be calculated on the outputs of the noise source,	Formatted: Small caps
and outputs of any conditioning component that is not listed in Section 3.1.5.1.1, and the <i>minimum</i>	Deleted: are
of all the estimates is taken as the entropy assessment of the entropy source for this	Deleted: , Deleted: and outputs of any vetted conditioning function that
Recommendation:	hasn't been validated as correctly implemented,
• The Most Common Value Estimate (Section 6.3.1),	(Formatted: Font: Italic
• The Collision Estimate (Section 6.3.2),	
• The Markov Estimate (Section 6.3.3),	
• The Compression Estimate (Section 6.3.4),	
• The <i>t</i> -Tuple Estimate (Section 6.3.5),	
• The Longest Repeated Substring (LRS) Estimate (Section 6.3.6),	
• The Multi Most Common in Window Prediction Estimate (Section 6.3.7),	
• The Lag Prediction Estimate (Section 6.3.8),	
• The MultiMMC Prediction Estimate (Section 6.3.9), and	
The LT79W Dry disting Estimate (Section (2.10)	
• The LZ78Y Prediction Estimate (Section 6.3.10).	
The Collision, Markov and Compression estimates are only applied to binary inputs.	
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate	
The Collision, Markov and Compression estimates are only applied to binary inputs.	
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is	
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source.	Formatted: Indent: Left: 0.25", Tab stops: Not at 0.25"
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_l \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e.,	Formatted: Indent: Left: 0.25", Tab stops: Not at 0.25" Deleted: $\hat{p} = \max_{i} \frac{\#(x_{i} \text{ in } S)}{L}$
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e., $\hat{p} = \max_i \frac{\#(x_i \ln S)}{L}$.	Deleted: $\hat{p} = \max_{l} \frac{\#(x_{l} \text{ in } S)}{L}$
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e., $\hat{p} \equiv \max_i \frac{\#(x_i \text{ in } S)}{L}$. 2. Calculate an upper bound on the probability of the most common value p_u as	Deleted: $\hat{p} = \max_{l} \frac{f(x_{l} \ln S)}{L}$ Formatted: Indent: Left: 0.25", Tab stops: Not at 0.25"
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e., $\hat{p} = \max_i \frac{\#(x_i \ln S)}{L}$.	Deleted: $\hat{p} = \max_{l} \frac{\#(x_{l} \text{ in } S)}{L}$
The Collision, Markov and Compression estimates are only applied to binary inputs. 5.3 Estimators 5.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e., $\hat{p} \equiv \max_i \frac{\#(x_i \text{ in } S)}{L}$. 2. Calculate an upper bound on the probability of the most common value p_u as	Deleted: $\hat{p} = \max_{l} \frac{f(x_{l} \ln S)}{L}$ Formatted: Indent: Left: 0.25", Tab stops: Not at 0.25"
The Collision, Markov and Compression estimates are only applied to binary inputs. 3.3 Estimators 3.3.1 The Most Common Value Estimate This method first finds the proportion \hat{p} of the most common value in the input dataset, and then constructs a confidence interval for this proportion. The upper bound of the confidence interval is used to estimate the min-entropy per sample of the source. Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$, 1. Find the proportion of the most common value \hat{p} in the dataset, i.e., $\hat{p} = \max_l \frac{\#(x_l \ln S)}{L}$. 2. Calculate an upper bound on the probability of the most common value p_u as $p_u = \min\left(1, \hat{p} + 2.576\sqrt{\frac{\hat{p}(1-\hat{p})}{L-1}}\right)$,	Deleted: $\hat{p} = \max_{l} \frac{f(x_{l} \ln S)}{L}$ Formatted: Indent: Left: 0.25", Tab stops: Not at 0.25"

l

VIST S	SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
Exam	<i>ble:</i> If the dataset is $S = (0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1)$, with $L = 20$, the	Formatted: Small caps
	common value is 1, with $\hat{p} = 0.4$. $p_u = 0.4 + 2.576\sqrt{0.012} = 0.6895$. The min-entropy	Deleted: 6822
	te is $-\log_2(0.6822) = 0.5363$.	Deleted: 5518
5.3.2	The Collision Estimate	
sample netho The m coward	oblision estimate, proposed by Hagerty and Draper [HD12], measures the mean number of es to the first collision in a dataset, where a collision is any repeated value. The goal of the d is to estimate the probability of the most-likely output value, based on the collision times. hethod will produce a low entropy estimate for noise sources that have considerable bias d a particular output or value (i.e., the mean time until a collision is relatively short), while cing a higher entropy estimate for a longer mean time to collision.	
<u> This e</u>	ntropy estimation method is only applied to binary inputs.	
Given	the input $S = (s_1,, s_L)$, where $s_i \in A = \{0, 1\}$,	Deleted:,
Siven		Deleted: <i>x</i> ₁ ,, <i>x</i> _k
1.	Set $v = 0$, index = 1.	Deleted: 1
2.	Beginning with s_{index} , step through the input until any observed value is repeated; i.e., find the smallest <i>j</i> such that $s_i = s_j$, for some <i>i</i> with $index \le i < j$.	
3.	Set $v = v + 1$, $t_v = j - index + 1$, and $index = j + 1$.	Deleted: , $v = v + 1$,
4.	Repeat steps 2-3 until the end of the dataset is reached.	
5.	Calculate the sample mean \overline{X} , and the sample standard deviation $\hat{\sigma}$, of t_i as	Deleted: $<\#>Set v = v - 1.$
	· · · · · · · · · · · · · · · · · · ·	<#>If v < 1000, map down the noise source outputs (see Sectio 6.4), based on the ranking provided, and retest the data. ¶
	$\bar{X} = \frac{1}{v} \sum_{i=1}^{v} t_i, \ \hat{\sigma} = \sqrt{\frac{1}{v-1} \sum_{i=1}^{v} (t_i - \bar{X})^2}.$	Formatted: Indent: Left: 0", First line: 0"
		Deleted:
6.	Compute the lower-bound of the confidence interval for the mean, based on a normal distribution with a confidence level of 99_%,	
	$\overline{X'} = \overline{X} - 2.576 \frac{\hat{\sigma}}{\sqrt{\nu}}.$	
7.	Using a binary search, solve for the parameter <i>p</i> , such that	Deleted: Let <i>k</i> be the number of possible values in the output space.
	$\overline{X}' = pq^{-2} \left(1 + \frac{1}{2} (p^{-1} - q^{-1}) \right) F(q) - pq^{-1} \frac{1}{2} (p^{-1} - q^{-1}).$	Deleted: $\left(1 + \frac{1}{k}(p^{-1} - q^{-1})\right)$
	where	Deleted: $\frac{1}{k}$
	q=1-p,	Deleted: $\frac{1-p}{k-1}$,
	$p \geq q$,	
	$F(1/z) = \Gamma(3, z) z^{-3} e^z,$	Deleted: $(k + 1, z)z^{-k-1}$

I

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

NDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
USED FOR RANDOM BIT GENERATION	Formatted: Small caps
as $\int_{0}^{\infty} t^{a-1} e^{-t} dt$. An efficient	Formatted: Small caps
<u>as $\int_{b} t^{u-1}e^{-t}dt$. An efficient</u>	Deleted: 14

Deleted: k).

Deleted: 2, 2, 0,

and $\Gamma(a,b)$ is the incomplete Gamma function defined as $\int_{b}^{\infty} t^{a-1}e^{-t}dt$. An efficient implementation of F(1/z) is provided in Appendix G.1.1. The bounds of the binary search should be 1/2 and 1.

RECOMMEN

8. If the binary search yields a solution, then the min-entropy estimation is the negative logarithm of the parameter, p:

 $min-entropy = -\log_2(p).$

If the search does not yield a solution, then the min-entropy estimation is:

 $min-entropy = \log_2(2)=1.$

Example: Suppose that S = (1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0). The collisions of the sequence are (1, 0, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1, 0), (1, 1), (1, 0, 0), (1, 1), (1, 0, 0), (1, 1), (1, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1). After step 5, <math>v = 14, and the sequence (t_1, \dots, t_v) is (3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2). Then $\overline{X} = 2.7143$, $\hat{\sigma} = 0.4688$, and $\overline{X'} = 2.3915$. The solution to the equation is p = 0.7329, giving an estimated minentropy of 0.4483.

6.3.3 The Markov Estimate

NIST SP 800-90B

In a first-order Markov process, the next sample value depends only on the latest observed sample value; in an n^{th} -order Markov process, the next sample value depends only on the previous n observed values. Therefore, a Markov model can be used as a template for testing sources with dependencies. The Markov estimate provides a min-entropy estimate by measuring the dependencies between consecutive values from the input dataset. The min-entropy estimate is based on the entropy present in any subsequence (i.e., chain) of outputs, instead of an estimate of the min-entropy per output.

Samples are collected from the noise source, and specified as *d*-long chains of samples. From this data, probabilities are determined for both the initial state and transitions between any two states. These probabilities are used to determine the highest probability of any particular *d*-long chain of samples. The corresponding maximum probability is used to determine the min-entropy present in all such chains generated by the noise source. This min-entropy value is particular to *d*-long chains and cannot be extrapolated linearly; i.e., chains of length *wd* will not necessarily have *w* times as much min-entropy present as a *d*-long chain. It may not be possible to know what a typical output length will be at the time of testing. Therefore, although not mathematically correct, in practice, calculating an entropy estimate per sample (extrapolated from that of the *d*-long chain) provides estimates that are close.

This entropy estimation method is only applied to binary inputs.

Given the input $S = (s_1, \ldots, s_L)$, where $s_i \in A = \{0, 1\}$,

- 1. Estimate the initial probabilities for each output value $P_0 = \frac{\#\{0 \text{ in } S\}}{I}$ and $P_1 = 1 P_{0}$.
 - Let $T_{\rm t}$ be the 2 \times 2 transition matrix of the form

Deleted: 2
Deleted: 2,
Deleted: 2
Deleted: 1, 2
Deleted: 0,
Deleted:).
Deleted: 6
Deleted: 2,
Deleted: 4, 4, 4,
Deleted:). For purposes of illustration, step 6 is skipped in this example.
Deleted: 3.3333
Deleted: 7454
Deleted: 5495
Deleted: 7063
Deleted: 5016
Deleted: The key component in estimating the entropy of a Markov process is the ability to accurately estimate the transition matrix probabilities of the Markov process. The main difficulty in making these estimates is the large data requirement necessary to resolve the dependencies. In particular, low-probability transitions may not occur often in a "small" dataset; the more data provided, the easier it becomes to make accurate estimates of transition probabilities. This method, however, avoids large data requirements by overestimating the low-probability transitions; as a consequence, an underestimate of min-entropy is obtained with less data. [§] The data requirement for this estimation method depends on the number of output samples k (i.e., the alphabet size); the largest k accommodated by this test is 2 ⁶ . An alphabet size greater than 2 ⁶ cannot be accommodated, since an unreasonable amount of data would be required to accurately estimate the matrix of transition probabilities – far more than is specified in Section 3.1.1 ¹⁵ . For 16-bit samples, for instance, a transition matrix of size 2 ¹⁶ × 2 ¹⁶ , [112]
Deleted: Any values for which these probabilities cannot be [113]
Deleted: The following algorithm uses output values as list. [114]
Formatted: Font: Italic
Deleted: <i>x</i> ₁ ,, <i>x</i> _k
Deleted: $<\#>$ Define the confidence level to be $\alpha = \dots [115]$
Formatted [116]
Deleted: $<\#>$ Let P be a list of length k. For i from 1 to k:

Deleted: $P_i = \min\left\{1, \frac{o_i}{L} + \varepsilon\right\},$	[117]
Deleted: a $k \times k$	
Deleted: . Estimate	

Formatted: Font: Italic

NIST SP 800-90B			RECOMMENDATION FOR THE ENTROPY SOURCES	~	Deleted: (2 nd Draft)
A			USED FOR RANDOM BIT GENERATION		(Formatted: Small caps
	<u>0</u>	<u>1</u>			Formatted: Small caps
<u>0</u>	P _{0,0}	<i>P</i> _{0,1}			
<u>1</u>	<i>P</i> _{1,0}	<i>P</i> _{1,1}			

where the probabilities are calculated as

$$P_{0,0} = \frac{\#\{00 \text{ in } S\}}{\#\{00 \text{ in } S\} + \#\{01 \text{ in } S\}}, P_{0,1} = \frac{\#\{01 \text{ in } S\}}{\#\{00 \text{ in } S\} + \#\{01 \text{ in } S\}},$$
$$P_{1,0} = \frac{\#\{10 \text{ in } S\}}{\#\{10 \text{ in } S\} + \#\{11 \text{ in } S\}}, \underline{\text{and}} P_{1,1} = \frac{\#\{11 \text{ in } S\}}{\#\{10 \text{ in } S\} + \#\{11 \text{ in } S\}}.$$

3. Find the probability of the most likely sequence of outputs, of length 128, as calculated below.

Sequence	Probability
000	$P_0 \times P_{0,0}^{127}$
010101	$P_0 \times P_{0,1}{}^{64} \times P_{1,0}{}^{63}$
<u>0111</u>	$P_0 \times P_{0,1} \times P_{1,1}^{126}$
<u>1000</u>	$P_1 \times P_{1,0} \times P_{0,0}^{126}$
<u>101010</u>	$P_1 \times P_{1,0}{}^{64} \times P_{0,1}{}^{63}$
<u>111</u>	$P_1 \times P_{1,1}^{127}$

4. Let \hat{p}_{max} be the maximum of the probabilities in the table given above. The min-entropy estimate is the negative logarithm of the probability of the most likely sequence of outputs, \hat{p}_{max} :

 $min-entropy = \min(-\log_2(\hat{p}_{max})/128,1)$

	0	1	¥	A
0	0 <u>,389</u>	0 <u>,611</u>	▼	N N
1	0, <u>571</u>	0,429	V	······// //

The probabilities of the possible sequences are

¹⁶ The test is designed for long sequences (i.e., $L \approx 1000000$), for the purpose of the example, a very small value of L is used.

	atted: List Paragraph, Indent: First line: 0.5", No s or numbering
\succ	ted: in the bounding matrix <i>T</i> , overestimating where
\succ	c = 1 if $c = 0$
I	Deleted: $T_{l,j} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
<u> </u>	Deleted: $T_{l,j} = \begin{cases} 1 & 1 & 0 \\ \min\left\{1, \frac{o_{l,j}}{o_l} + \varepsilon_l\right\} & \text{otherwise,} \dots \text{ [11]} \end{cases}$
Delet	:ed: ,
<u> </u>	atted [11
De	leted: , using a dynamic programming algorithm as follpyz
\succ	leted: a list
\succ	leted: length k.¶ [12
\succ	leted: each sample value. For c from 1 to k: 12
\succ	atted: Indent: Left: 0.5", Space After: 6 pt
\succ	leted: -1/d
De	leted:).
\succ	ted: Suppose
\succ	ted: <i>k</i> = 3
\succ	ted: 21
\succ	ted: 2, 2, 0,
Delet	
\succ	ted: 2,
Delet	
\succ	ted: 1,2
\succ	ted: 1,
	ted: 0). In step
	ted: $\alpha = \min(0.99^9, 0.99^d) = 0.2762$. After step 2, $\xi_1 = 12$
\succ	ted: .4687 $P_2 =$
\succ	ted: .4211,
\succ	ted: P ₃ = 0.3734. After step 4, the bounding ted: T has values:
\succ	-
\succ	ted:Page BreakPage Break
Delet	
\succ	ted Cells
\succ	ted: 0.2948
\succ	ted: 4376
\succ	ted: 7233
\succ	
\succ	ted: 0.5805
\succ	ted: 5805
Delei	. cu. 2740

ECOMMENDATION FOR THE ENTROPY SOURCES
USED FOR RANDOM BIT GENERATION

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

Sequence	<u>Probability</u>
000	<u>3.9837</u> × <u>10-53</u>
<u>010101</u>	<u>4.4813</u> × <u>10⁻³⁰</u>
<u>0111</u>	<u>1.4202</u> × <u>10⁻⁴⁷</u>
<u>100</u>	<u>6.4631</u> × <u>10⁻⁵³</u>
<u>101010</u>	<u>4.6288</u> × <u>10⁻³⁰</u>
<u>111</u>	<u>1.1021</u> × <u>10⁻⁴⁷</u>

RE

The resulting entropy estimate is $\min(-\log_2(4.6288 \times 10^{-30})/128,1) = \min(0.761,1) = 0.761_{\bullet}$

6.3.4 The Compression Estimate

The compression estimate, proposed by Hagerty and Draper [HD12], computes the entropy rate of a dataset, based on how much the dataset can be compressed. This estimator is based on the Maurer Universal Statistic [Mau92]. The estimate is computed by generating a dictionary of values, and then computing the average number of samples required to produce an output, based on the dictionary. One advantage of using the Maurer statistic is that there is no assumption of independence. When <u>sequences</u> with dependencies is tested with this statistic, the compression rate is affected (and therefore the entropy), but an entropy estimate is still obtained. A calculation of the Maurer statistic is efficient, as it requires only one pass through the dataset to provide an entropy estimate.

Given a dataset from the noise source, the samples are first partitioned into two disjoint groups. The first group serves as the dictionary for the compression algorithm; the second group is used as the test group. The compression values are calculated over the test group to determine the mean, which is the Maurer statistic. Using the same method as the collision estimate, the probability distribution that has the minimum possible entropy for the calculated Maurer statistic is determined. For this distribution, the entropy per sample is calculated as the lower bound on the entropy that is present.

This entropy estimation method is only applied to binary inputs.

Given the input $S = (s_1, \dots, s_L)$, where $s_i \in A = \{0, 1\}$,

1. Let b = 6. Create a new sequence, $S' = (s'_1, ..., s'_{\lfloor L/b \rfloor})$, by dividing *S* into non-overlapping *b*-bit blocks. If *L* is not a multiple of *b*, discard the extra data.

Moved up [11]: respectively.
Deleted: After step 6, the highest probability of any chain of
length 128 generated by this bounding matrix is 1.7372×10^{-24} ,
yielding an estimated min-entropy of 0.6166.

Formatted: Font color: Black

Deleted: output

Deleted: x1, ..., xk

Deleted: The following algorithm uses output values as list indices. If the output set does not consist of consecutive values, then the values must be adjusted before this algorithm is applied. This can be done without altering entropy estimates, as the data is categorical. For example, if the output set is $\{0, 1, 4\}$, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1 can stay the same, but 4 must be changed to 2. The new set is $\{0, 1, 2\}$, and the new sequence is (0, 0, 2, 1, 0, 2, 0, 1).

ST S	P 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES
	Used for Random Bit Generation
2.	Partition the dataset S'_{\pm} into two disjoint groups. These two groups will form the dictionary and the test data.
	a. Create the dictionary from the first $d = 1000$ <u>elements of $S'_{,}(s'_{1},, s'_{d})_{.}$</u>
	b. Use the remaining $v = \lfloor L/b \rfloor - d$ observations, $(s'_{d+1},, s'_{\lfloor L/b \rfloor})$, for testing.
3.	Initialize the dictionary <i>dict</i> to an all zero array of size $2^{\underline{b}}$. For <i>i</i> from 1 to <i>d</i> , let <i>dict</i> [s_i'] = <i>i</i> . The value of <i>dict</i> [s_i'] is the index of the last occurrence of each s_i' in the dictionary.
4.	Run the test data against the dictionary created in Step 2.
	a. Let \underline{D} be a list of length v.
	b. For <i>i</i> from $d + 1$ to $\frac{L/b}{2}$
	i. If $dict[s'_i]$ is non-zero, then $D_{i\cdot d} = i - dict[s'_i]$. Update the dictionary with the index of the most recent observation, $dict[s'_i] = i$.
	ii. If $dict[s_i]$ is zero, add that value to the dictionary, i.e., $dict[s_i'] = i$. Let $D_{i-d} = i$.
5.	Calculate the sample mean, \overline{X} , and sample standard deviation ¹⁷ , $\hat{\sigma}$, of $(\log_2(D_1), \dots, \log_2(D_v))$.
	Σ^{ν} log D
	$\bar{X} = \frac{\sum_{i=1}^{\nu} \log_2 D_i}{\nu},$
	c = 0.5907
	and
	$\hat{\sigma} = c_{\sqrt{\frac{\sum_{i=1}^{\nu} (\log_2 D_i)^2}{\nu - 1}} - \bar{X}^2 .$
6.	Compute the lower-bound of the confidence interval for the mean, based on a normal distribution using
	$\overline{X'} = \overline{X} - \frac{2.576\hat{\sigma}}{\sqrt{\nu}}.$
7.	Using a binary search, solve for the parameter p , such that the following equation is true:
	$\overline{X'} = G(p)_{\mathbf{v}} + (2^b - 1)G(q),$
	where

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

¹⁷ Note that a correction factor is applied to the standard deviation, as described in [Mau92] and computed with higher accuracy in [CoNa98]. This correction factor reduces the standard deviation to account for dependencies in the D_i values.

MMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
USED FOR RANDOM BIT GENERATION	Formatted: Small caps
se two groups will form the dictionary	Formatted: Small caps
se two groups will form the dictionary	
elements of $S'_{\star}(s'_1, \dots, s'_d)$.	Deleted: observations, (<i>s</i> ₁ , <i>s</i> ₂ ,, <i>s</i> _d).
<u>promento or b , (61), 5a).</u>	
ns, $(s'_{d+1}, \dots, s'_{ L/b })$, for testing.	Deleted: L -
$e^{\underline{2}^{b}}$. For <i>i</i> from 1 to <i>d</i> , let $dict[s'_{i}] = i$.	Deleted: (<i>s</i> _{<i>d</i>+1} ,, <i>s</i> _{<i>L</i>}),
	Deleted: k
ce of each s_i' in the dictionary.	Deleted: s _i]
p 2.	Deleted: s _i]
	Deleted: s _i
	Deleted: D _i
	Deleted: L:
<i>ict</i> [s'_i]. Update the dictionary with the	Deleted: s _i]
$dict[s_i']=i.$	Deleted: s _i].
dictionary, i.e., $dict[s'_i] = i$. Let $D_{i-d} =$	Deleted: s _i] =
	Deleted: s _i]=

Deleted: Let $b = \lfloor \log_2(\max(x_1, ..., x_k)) \rfloor + 1$, the number of bits needed to represent the largest symbol in the output alphabet. **Deleted:**),...,

Deleted: $\sqrt{\frac{\sum_{l=1}^{v}(\log_2 D_l)^2}{v}} - \bar{X}^2$.

Deleted: +(*n* – 1)

Deleted: Maurer

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Deleted:).

$$G(z) = \frac{1}{v} \sum_{t=d+1}^{L} \sum_{u=1}^{t} \log_2(u) F(z, t, u),$$

$$F(z, t, u) = \begin{cases} z^2 (1-z)^{u-1} & if \quad u < t \\ z (1-z)^{t-1} & if \quad u = t \end{cases},$$

and

$$q = \frac{1-p}{2^b - 1}$$

<u>The bounds of the binary search should be 2^{-b} and 1.</u>

8. If the binary search yields a solution, then the min-entropy is the negative logarithm of the parameter, *p*:

min-entropy	$= -log_2$	(n)/h
min-enii opy	1052	(p_{μ}) .

If the search does not yield a solution, then the min-entropy estimation is:

min-entropy = 1.

<u>i</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>
s'i	<u>100011</u>	<u>100101</u>	<u>010111</u>	<u>001100</u>
$\underline{dict}[s'_i]$	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>

After Step 4, the resulting $D_1 = 5$, $D_2 = 6$, $D_3 = 7$, and $D_4 = 7$. The values computed in step 5 are $\overline{X} = 2.6304$ and $\hat{\sigma} = 0.9074$, and the value for step 6 is $\overline{X'} = 1.4617$. The value of p that solves the equation in step 7 is 0.5715, and the min-entropy estimate is 0.1345.

6.3.5 t-Tuple Estimate

This method examines the frequency of *t*-tuples (pairs, triples, etc.) that appears in the input dataset and produces an estimate of the entropy per sample, based on the frequency of those *t*-tuples. The frequency of the *t*-tuple $(\underline{r_1, r_2, \ldots, r_t})$ in $S = (s_1, \ldots, s_L)$ is the number of *i*'s such that $s_i = \underline{r_1}, s_{i+1} =$ $\underline{r_2}, \ldots, s_{i+t-1} = \underline{r_t}$. It should be noted that the tuples can overlap.

Given the input $S = (s_1, ..., s_L)$, where $s_i \in A = \{x_1, ..., x_k\}$,

Deleted	$\log_2(k)$.
Deleted	: 10
Deleted	k = 3,
Deleted	: 21
Deleted:	2,2
Deleted:	: 1,
Deleted:	2,
Deleted:	: 2, 1, 2, 0,
Deleted:	: 2,
Deleted	: 0).
Deleted	2, 2, 0, 1, 0, 2, 0, 1, 2, 1
Formatt	ed: Font: Times New Roman, Font color: Auto
Deleted	2 , 0, 1, 2, 1, 0, 0, 1, 0, 0, 0).
Deleted	: 11
Deleted	:, dict[0]
Deleted	<i>dict</i> [1] = 10,
	dict[2] = 9. In Step 4, b is calculated as 2. After g the test sequence,
Deleted	$1.098, \hat{\sigma} = 0.2620$
Deleted:	0.8944
Deleted	: 7003
Deleted	5139.
Deleted	$x_1, x_2,, x_t$
Deleted	x ₁
Deleted	<i>x</i> ₂ ,,
Deleted	1 v

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCES Deleted: (2nd Draft) USED FOR RANDOM BIT GENERATION Formatted: Small caps Formatted: Small caps 1. Find the largest t such that the number of occurrences of the most common t-tuple in S is at least 35. 2. Let Q[i] store the number of occurrences of the most common *i*-tuple in S for i=1, ..., t. Deleted: = For example, in S=(2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), Q[1] = $\max(\#0^{\circ}s,\#1^{\circ}s,\#2^{\circ}s) = \#0^{\circ}s = 9$, and Q[2] = 4 is obtained by the number of the tuple 01 in Deleted: 01's S. 3. For i = 1 to t, let P[i] = Q[i] / (L - i + 1), and compute an estimate on the maximum individual Formatted: Space After: 0 pt sample value probability as $P_{max}[i] = P[i]^{1/i}$. Let $\hat{p}_{max} = \max(P_{max}[1], \dots, P_{max}[t])$. Deleted: = Deleted: an estimate for pmax is computed as Let 4. Calculate an upper bound on the probability of the most common value p_u as Deleted: 1= $p_u = \min\left(1, \hat{p}_{max} + 2.576 \sqrt{\frac{\hat{p}_{max} (1 - \hat{p}_{max})}{L - 1}}\right),$ 5. The entropy estimate is calculated as $-\log_2(p_u)$. Formatted: Not Superscript/ Subscript *Example*: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step one. Formatted: Normal, Space After: 0 pt, No bullets or numbering Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21. The number of occurrences of the most common 4-tuple is 2, which falls below the threshold, and therefore t = 3. In step 2, Q[1] = 9, Q[2] = 4, and Q[3] = 3. P[1] = 0.4286, P[2] = 0.2, P[3] = 0.1579. $P_{max}[1]$ $= 0.4286, P_{max}[2] = 0.4472, P_{max}[3] = 0.5405, and \hat{p}_{max}=0.5405$. The upper bound of a 99 % Formatted: Font: Italic, Subscript confidence interval is 0.8276. The min-entropy estimate is $-\log_2(0.8276) = 0.273$. Deleted: (Pmax[1], ..., Pmax[t]). 6.3.6 Longest Repeated Substring (LRS) Estimate This method estimates the collision entropy (sampling without replacement) of the source, based on the number of repeated substrings (tuples) within the input dataset. Although this method estimates collision entropy (an upper bound on min-entropy), this estimate handles tuple sizes that are too large for the *t*-tuple estimate, and is therefore a complementary estimate. Given the input $S = (s_1, ..., s_L)$, where $s_i \in A = \{x_1, ..., x_k\}$, 1. Find the smallest u such that the number of occurrences of the most common u-tuple in S is less than 35. Deleted: 20 2. Find the largest v such that the number of occurrences of the most common v-tuple in S is at least 2_{x} and the most common (v+1)-tuple in S occurs once. In other words, v is the largest length that a tuple repeat occurs. If v < u, this estimate cannot be computed. 3. For $W_{\bullet} = u$ to v, compute the estimated W-tuple collision probability Deleted: $P_W = \frac{\sum_i \binom{C_i}{2}}{\binom{L-W+1}{2}},$ Deleted: where C_i is the number of occurrences of the *i*th unique *W*-tuple. <u>Compute</u> the estimated Formatted: Left, Indent: Left: 0.5' average collision probability per string symbol as $P_{max,W} = P_W^{1/W}$. Let $\hat{p} =$ Deleted: For each Pw, con $\max(P_{max,u}, \ldots, P_{max,v}).$ Deleted:

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

4. Calculate an upper bound on the probability of the most common value p_{μ} as

$$p_u = \min\left(1, \hat{p} + 2.576 \sqrt{\frac{\hat{p}(1-\hat{p})}{L-1}}\right)$$

5. The entropy estimate is calculated as $-\log_2(p_u)$.

Example: For the purpose of this example, suppose that the cutoff is 3 instead of 35 in step 1. Suppose that S = (2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0), and L = 21. In step 1, u is calculated as 4, as the frequency of the most common 4-tuple is 2. In step 2, v is calculated as 5. After step 3, $P_4 = 0.0131$, $P_5 = 0.0074$, $P_{max_{eff}} = 0.3381$, $P_{max_{eff}} = 0.3744$, and $\hat{p} = max(0.3381, 0.3744) = 0.3744$. After step 4, $p_u = 0.6531$. The min-entropy estimate is $-\log_2(0.6531) = 0.6146$.

6.3.7 Multi Most Common in Window Prediction Estimate

The Multi Most Common in Window (MultiMCW) predictor contains several subpredictors, each of which aims to guess the next output, based on the last *w* outputs. Each subpredictor predicts the value that occurs most often in that window of *w* previous outputs. The MultiMCW predictor keeps a scoreboard that records the number of times that each subpredictor was correct, and uses the subpredictor with the most correct predictions to predict the next value. In the event of a tie, the most common sample value that has appeared most recently is predicted. This predictor was designed for cases where the most common value changes over time, but still remains relatively stationary over reasonable lengths of the sequence.

Given the input $S = (s_1, ..., s_L)$, where $s_i \in A = \{x_1, ..., x_k\}$,

- 1. Let window sizes be $w_1=63$, $w_2=255$, $w_3=1023$, $w_4=4095$, and $N = L_{\underline{-}} w_1$. Let *correct* be an array of *N* Boolean values, each initialized to 0.
- 2. Let *scoreboard* be a list of four counters, each initialized to 0. Let *frequent* be a list of four values, each initialized to *Null*. Let *winner* = 1.
- 3. For $i = w_1 + 1$ to *L*:
 - a. For j = 1 to 4,
 - i. If $i > w_j$, let *frequent*_j be the most frequent value in $(s_{i \cdot w_j}, s_{i \cdot w_j+1}, ..., s_{i-l})$. If there is a tie, then the most frequent value that has appeared most recently is assigned to *frequent*_i.
 - ii. Else, let $frequent_j = Null$.
 - b. Let *prediction* = *frequent*_{winner}.
 - c. If $(prediction = s_i)$, let $correct_{i-w_1} = 1$.
 - d. Update the *scoreboard*. For j = 1 to 4,
 - i. If $(frequent_j = s_i)$
 - 1. Let $scoreboard_j = scoreboard_j + 1$

Deleted: collision	
Formatted: Not Superscript/ Subscript	
Deleted: max(
Formatted: Space After: 0 pt	

Deleted: (2nd Draft)

Deleted: ", ...

Deleted:

Deleted: frequent, is assigned to

Deleted: v).

Formatted: Small caps

	긐
	is pu
	bub
	iblic
	atic
	ă.
	လ ပ
	is availa
	ilab
	e
	ble free of o
	<u>o</u> f
	c <u>h</u>
	arc
	ef
	ror i
	2
	Ĩ
	is://
	do
	.o
1	0'1
	10.6
	Ő2
	8
	S
	-

RECOMMENDATION FOR THE ENTROPY SOURCES Used FOR RANDOM BIT GENERATION

2. If *scoreboard*_{*j*} \geq *scoreboard*_{*winner*}, let *winner* =*j*

- 4. Let *C* be the number of ones in *correct*.
- 5. Calculate the predictor's global performance as $P_{global} = \frac{c}{N_{f}}$. The upper bound of the 99 % confidence interval on P_{global} , denoted P'_{global} is calculated as:

$$P'_{global} = \begin{cases} 1 - 0.01 \frac{1}{N}, & \text{if } P_{global} = 0, \\ \min(1, P_{global} + 2.576 \sqrt{\frac{P_{global}(1 - P_{global})}{N - 1}}), & \text{otherwise} \end{cases}$$

where 2.576 corresponds to the $Z_{(1-0.005)}$ value.

6. Calculate the predictor's local performance, based on the longest run of correct predictions. Let r be one greater than the length of the longest run of ones in *correct*. Use a binary search to solve the following for P_{local} :

$$0.99 = \frac{1 - P_{local}x}{(r+1 - rx)q} \times \frac{1}{x^{N+1}}$$

where $q = 1 - P_{local}$ and $x = x_{10}$, derived by iterating the recurrence relation

$$x_{i} = 1 + qP_{local}^{r}x_{i-1}^{r+1}$$

for *j* from 1 to 10, and $x_{q} = 1$. Note that solving for P_{local} using the logarithm of these equations is robust against overflows. Table 3 given in Appendix G.2 provides some precalculated values of P_{local} .

7. The min-entropy is the negative logarithm of the greater performance metric

 $min-entropy = -\log_2(\max(P'_{global}, P_{local_2}, \frac{1}{\nu})).$

Example: Suppose that S = (1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 0, 0), so that L = 12. For the purpose of this example, suppose that $w_1 = 3$, $w_2 = 5$, $w_3 = 7$, $w_4 = 9$ (instead of $w_1 = 63$, $w_2 = 255$, $w_3 = 1023$, $w_4 = 4095$). Then N = 9. In step 3, the values are as follows:

i	frequent	scoreboard (step 3b),	Winner (step 3b)	prediction	Si	correct _{i-w1}	scoreboard (step 3d)
4	(1,,,)	(0, 0, 0, 0)	1	1	0	0	(0, 0, 0, 0)
5	(0,,,)	(0, 0, 0, 0)	1	0	2	0	(0, 0, 0, 0)
6	(2, 2,,)	(0, 0, 0, 0)	1	2	1	0	(0, 0, 0, 0)
7	(1, 1,,)	(0, 0, 0, 0)	1	1	1	1	(1, 1, 0, 0)
8	(1, 1, 1,)	(1, 1, 0, 0)	2	1	2	0	(1, 1, 0, 0)
9	(1, 2, 2,)	(1, 1, 0, 0)	2	2	2	1	(1, 2, 1, 0)
10	(2, 2, 2, 2)	(1, 2, 1, 0)	2	2	0	0	(1, 2, 1, 0)
11	(2, 2, 2, 2)	(1, 2, 1, 0)	2	2	0	0	(1, 2, 1, 0)
12	(0, 0, 2, 0)	(1, 2, 1, 0)	2	0	0	1	(2, 3, 1, 1)

Deleted: a 99% upper bound on
Deleted:

Deleted: =1.	
Formatted: Font: Not Italic	
Deleted:)).	
Deleted: the	
Deleted: =	
Formatted: Centered	
Formatted Table	
Formatted: Centered	
Deleted:	
Formatted: Centered	

NIST SP 800-90B RECOMMENDATION FOR THE ENTROPY SOURCE	CES Deleted: (2 nd Draft)
Used for Random Bit Generat	
After all of the predictions are made, $correct = (0, 0, 0, 1, 0, 1, 0, 0, 1)$. Then, $P_{global} = 0.33$	33 Formatted: Small caps
$P'_{global} = 0.7627, P_{local} = 0.036$, and the resulting min-entropy estimate is 0.3908 .	Deleted: 5
	Deleted: 3909
6.3.8 The Lag Prediction Estimate	
The lag predictor contains several subpredictors, each of which predicts the next output, based a specified lag. The lag predictor keeps a scoreboard that records the number of times that ea- subpredictor was correct, and uses the subpredictor with the most correct predictions to predict next value.	ach
Given the input $S = (s_1,, s_L)$, where $s_i \in A = \{x_1,, x_k\}$,	
1. Let $D = 128$, and $N = L - 1$. Let <i>lag</i> be a list of <i>D</i> values, each initialized to <i>Null</i> . Let <i>corr</i> be a list of <i>N</i> Boolean values, each initialized to 0.	rect
 Let <i>scoreboard</i> be a list of <i>D</i> counters, each initialized to 0. Let <i>winner</i> = 1. For <i>i</i> = 2 to <i>L</i>: 	Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"
a. For $d = 1$ to D :	
	P-lated.
i. If $(d < i)$, $lag_d = s_{i_d}$	Deleted:
ii. Else $lag_d = Null_{\mathbf{z}}$	Deleted:
b. Let $prediction = lag_{winner}$.	Formatted: Font: Italic
c. If $(prediction = s_{i,j})$ let $correct_{i-1} = 1$.	
d. Update the <i>scoreboard</i> . For $d = 1$ to <i>D</i> :	
i. If $(lag_d = s_i)$	
1. Let <i>scoreboard</i> _d = <i>scoreboard</i> _d +1.	
2. If scoreboard _d \geq scoreboard _{winner} let winner = d.	Deleted:
4. Let <i>C</i> be the number of ones in <i>correct</i> .	
5. Calculate the predictor's global performance as $P_{global} = \frac{c}{N_s}$. The upper bound of the 99	Deleted: a 99% upper bound on
confidence interval on P_{global} , denoted P'_{global} is calculated as:	Deleted: as:
$P'_{global} = \begin{cases} 1 - 0.01 \frac{1}{N}, & \text{if } P_{global} = 0, \\ \min(1, P_{global} + 2.576 \sqrt{\frac{P_{global}(1 - P_{global})}{N - 1}}), & \text{otherwise} \end{cases}$	
where 2.576 corresponds to the $Z_{(1-0.005)}$ value.	
<u>6. Calculate the predictor's local performance, based on the longest run of correct prediction</u> <u>Let <i>r</i> be one greater than the length of the longest run of ones in <i>correct</i>. Use a bin search to solve the following for P_{local}.</u>	
$0.99 = \frac{1 - P_{local}x}{(r+1 - rx)q} \times \frac{1}{x^{N+1}},$	
51	

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

where

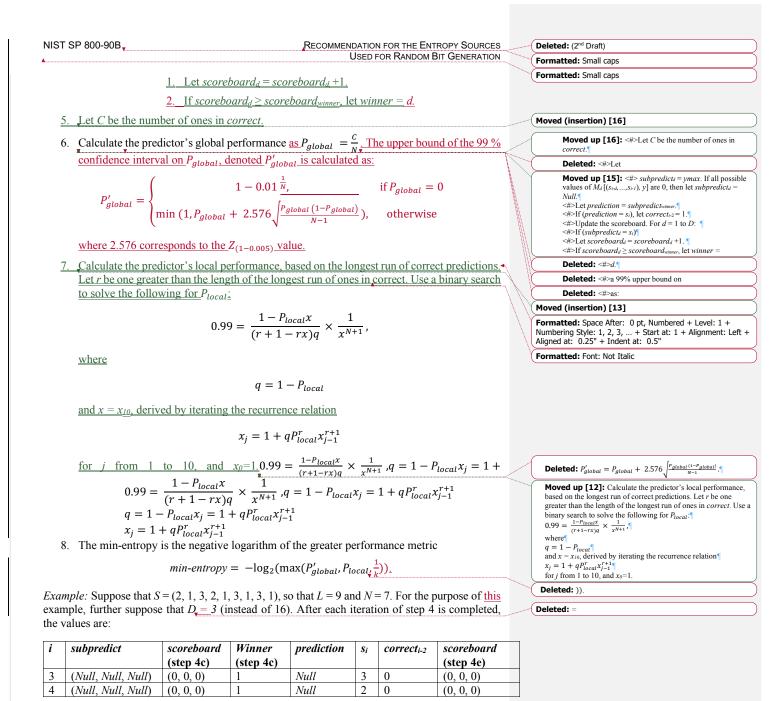
$$q = 1 - P_{local}$$

and $x = x_{10}$, derived by iterating the recurrence relation

 $x_j = 1 + q P_{local}^r x_{j-1}^{r+1}$

 $\frac{\text{for } j \text{ from 1 to 10, and } x_0 = 1, 0.99 = \frac{1 - P_{local}x}{(r+1 - rx)q} \times \frac{1}{x^{N+1}}, q = 1 - P_{local}x_j = 1 + q^{N-1}$ $0.99 = \frac{1 - P_{local}x}{(r+1 - rx)q} \times \frac{1}{x^{N+1}}, q = 1 - P_{local}x_j = 1 + qP_{local}^r x_{j-1}^{r+1}$ $q = 1 - P_{local}x_j = 1 + qP_{local}^r x_{j-1}^{r+1}$ $x_j = 1 + qP_{local}^r x_{j-1}^{r+1}$

7. The min-entropy is the negative logarithm of the greater performance metric


 $min-entropy = -\log_2(\max(P'_{global}, P_{local_1}, \frac{1}{k})).$

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2), so that L = 10 and N = 9. For the purpose of <u>this</u> example, suppose that D = 3 (instead of 128). The following table shows the values in step 3.

i	lag		Winner,	prediction	Si	correct _i .	scoreboard	•
	0		(step 3b)			1	(step 3d)	
2	(2, ,)	*	1	2	1	0	(0, 0, 0)	•
3	(1, 2, - -)	v	1	1	3	0	(0, 0, 0)	•
4	(3, 1, 2)	v	1	3	2	0	(0, 0, 1)	•
5	(2, 3, 1)	v	3	1	1	1	(0, 0, 2)	
6	(1, 2, 3)	v	3	3	3	1	(0, 0, 3)	
7		(3, 1, 2)	3	2	1	0	(0, 1, 3)	-
8		(1, 3, 1)	3	<u>1</u>	3	0	(0, 2, 3)	•
9		(3, 1, 3)		3	1	Ð	(0, 3, , <u>3)</u>	
10	(1, 3, 1)	¥	2	3	2	0	(0, 3, 3)	

(Delete de (Ord Dec ())	
Deleted: (2 nd Draft)	
Formatted	[126]
Formatted	[127]
Deleted: $P'_{global} = P_{global} + 2.576 \sqrt{\frac{P_{global}}{P_{global}}}$	$\frac{d(1-P_{global})}{N-1}$.
Moved down [13]: Calculate the predicte	or's local
Formatted	[128]
Deleted:)).	
Deleted: the)
Formatted	[129]
Formatted Table	[130]
Deleted: scoreboard (step 3b))
Deleted Cells	[131]
Formatted	[132]
Deleted:	
Deleted: (0, 0, 0)	
Formatted	[133]
Formatted	[133]
(Formatted	[134]
Deleted: (0, 0, 0)	[135]
Formatted	[126]
Formatted	[136]
Deleted: (0, 0, 0)	[137]
Formatted	
>	[138]
Formatted	[139]
Deleted: (0, 0, 1)	
Formatted	[140]
Formatted	[141]
Deleted: (0, 0, 2)	
Formatted	[142]
Formatted	[143]
Deleted: (0, 0,)	[144]
Deleted: 3	
Deleted Cells	[145]
Formatted	[146]
Formatted	[147]
Deleted: (0, 1,)	[148]
Deleted: 3)
Deleted: 1)
Deleted Cells	[149]
Formatted	[150]
Formatted	[151]
Deleted: (0, 2,)	[152]
Deleted: 3	
Deleted: 1	
Deleted: (0, 3, 3)	
Deleted Cells	[153]
Formatted	[154]
Deleted: (0, 3, 3)	
Deleted Cells	[155]
Formatted	[156]

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
A	Used for Random Bit Generation	Formatted: Small caps
After all of the predictions are made	<i>prrect</i> = $(0, 0, 0, 1, 1, 0, 0, 0, 0)$. Then, $P_{alobal} = 0.2222$,	Formatted: Small caps
	I the resulting min-entropy estimate is 0.735 .	Deleted: 6667
global cloces, local creat, and		Deleted: 5850
6.3.9 The MultiMMC Prediction E	stimate	
subpredictors. Each MMC predictor re- output to a subsequent output (rather the model), and makes a prediction, based of output. MultiMMC contains <i>D</i> MMC su- to <i>D</i> . For example, the MMC with depth <i>D</i> creates a <i>D</i> th -order model. MultiMMC	ed of multiple Markov Model with Counting (MMC) ecords the observed frequencies for transitions from one han the probability of a transition, as in a typical Markov on the most frequently observed transition from the current ubpredictors running in parallel, one for each depth from 1 n 1 creates a first-order model, while the MMC with depth C keeps a scoreboard that records the number of times that and uses the subpredictor with the most correct predictions	
Given the input $S = (s_1,, s_L)$, where s	$i \in A = \{x_1, \ldots, x_k\},$	
	<i>ubpredict</i> be a list of <i>D</i> values, each initialized to <i>Null</i> . Let each initialized to 0. Let <i>entries</i> be an array of <i>D</i> values,	Deleted: Boolean
each initialized to 0, and let max	$Entries = 100\ 000$.	
	counters, where $M_d[x, y]$ denotes the number of observed	Deleted: list
transitions from output x to outp	tut y for the $\frac{d^{th}}{dt}$ -order MMC.	Deleted: <i>d</i> th
3. Let <i>scoreboard</i> be a list of <i>D</i> co	unters, each initialized to 0. Let winner = 1 .	Moved (insertion) [14]
4. For $i = 3$ to <i>L</i> :		Moved up [14]: <#>Let <i>scoreboard</i> be a list of <i>D</i> counters, each initialized to 0. Let <i>winner</i> = 1.
a. For $d = 1$ to D :		Deleted: <#>=
<u>i. If $d < i-1$</u>		Deleted: -
	, s_{i-2} , s_{i-1}] is in M_d , increment $M_d[(s_{i-d-1},, s_{i-2}), s_{i-1}]$ by	Deleted: , increment MMC _d
1.		Formatted
2 Else if <i>en</i>	tries _d \leq maxEntries, add a counter for [($s_{i-d-1}, \dots, s_{j-2}$), s_{j-1}]	Deleted:,
	let $M_d[(s_{i-d-1}, \dots, s_{i-2}), s_{i-1}] = 1$ and increment <i>entries_d</i> by	
<u>1.</u>		
b. For $d = 1$ to D:		
	y value that corresponds to the highest $M_d[(s_{i-d},,s_{i-1}), y]$	Deleted: Find
in the tie. Let sul	that y as ymax. If there is a tie, let ymax be the greatest y $predict_d = ymax$. If all possible values of $M_d[(s_{t-d_t},, s_{t-1})_{t-1}]$, $subpredict_d = Null_{t-1}$	Moved (insertion) [15]
<u>c.</u> Let prediction = subpred		
d. If (prediction = s_i), let co		
e. Update the scoreboard. I		
i. If (subpredict _d =		
<u>1. 11 (suoprealCld</u> —	<u>511</u>	
	53	

11010	SP 800-90B			RECOM			E ENTROPY SOURCES	 Deleted: (2 nd Draft)
A					USED	FOR RAN	DOM BIT GENERATION	 • Formatted: Small caps
5 ((1, Null, Null)	(0, 0, 0)	1	1	1	1	(1, 0, 0)	Formatted: Small caps
	(3, 3, Null)	(0, 0, 0) (1, 0, 0)	1	3	3	1	(1, 0, 0) (2, 1, 0)	
7 ((2, 2, 2)	(2, 1, 0)	1	2	1	0	(2, 1, 0)	
8 ((3, Null, Null)	(2, 1, 0)	1	3	3	1	(3, 1, 0)	
9 ((2, 2, <i>Null</i>)	(3, 1, 0)	1	2	1	0	(3, 1, 0)	

Deleted:

Let $\{x \rightarrow y:c\}$ denote a nonzero count *c* for the transition from *x* to *y*. Models M_1 , M_2 , and M_3 are shown below after step 4a (the model update step) for each value of *i*.

I

				RECOMMENDATION FOR THE ENTROPY SOUR	
				USED FOR RANDOM BIT GENERA	TION Formatted: Small caps
	i	M_1	M_2	<i>M</i> ₃	Formatted: Small caps
	3	{2→1:1}			Formatted Table
	4	$\{1 \rightarrow 3:1\},\$ $\{2 \rightarrow 1:1\}$	$\{(2, 1) \rightarrow 3:1\}$		
	5	$\{1 \rightarrow 3:1\},\$ $\{2 \rightarrow 1:1\},\$ $\{3 \rightarrow 2:1\}$	$\{(1, 3) \rightarrow 2:1\}, \\ \{(2, 1) \rightarrow 3:1\}$	$\{(2, 1, 3) \rightarrow 2:1\}$	
	6	$\{1 \rightarrow 3:1\},\$ $\{2 \rightarrow 1:2\},\$ $\{3 \rightarrow 2:1\}$	$ \{ (1, 3) \rightarrow 2:1 \}, \\ \{ (2, 1) \rightarrow 3:1 \}, \\ \{ (3, 2) \rightarrow 1:1 \} $	$\{(1, 3, 2) \rightarrow 1:1\}, \\ \{(2, 1, 3) \rightarrow 2:1\}$	
	7	$\{1 \rightarrow 3:2\},\$ $\{2 \rightarrow 1:2\},\$ $\{3 \rightarrow 2:1\}$	$\{(1, 3) \rightarrow 2:1\},\$ $\{(2, 1) \rightarrow 3:2\},\$ $\{(3, 2) \rightarrow 1:1\}$		
	8	$\{1 \rightarrow 3:2\},\$ $\{2 \rightarrow 1:2\},\$ $\{3 \rightarrow 1:1\},\$ $\{3 \rightarrow 2:1\}$		$\{(2, 1, 3) \rightarrow 1:1\},\$	
	9	$\begin{array}{c} \{3 \rightarrow 2:1\} \\ \{1 \rightarrow 3:3\}, \\ \{2 \rightarrow 1:2\}, \\ \{3 \rightarrow 1:1\}, \\ \{3 \rightarrow 2:1\} \end{array}$	{(1, 3)→1:1},	$\{(1, 3, 1) \rightarrow 3:1\}, \\ \{(1, 3, 2) \rightarrow 1:1\}, \\ \{(2, 1, 3) \rightarrow 1:1\}, \\$	
			$\{(3, 2) \rightarrow 1:1\}$	$\{(3, 2, 1) \rightarrow 3:1\}$	
			ect = (0, 0, 1, 1, 1)	$(0, 1, 0)$. Then, $P_{global} = 0.4286$, P'_{global}	al =
After the predictions at 0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P	307, a	and the resu	<i>ect</i> = (0, 0, 1, 1, 1, 1) lting min-entrop	$(0, 1, 0)$. Then, $P_{global} = 0.4286$, P'_{global}	
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P Fine LZ78Y predictor for adding strings to the dictional dictionary has reached	Pred i is loo the d ary sed its	and the resu iction Esti osely based ictionary. o far, and maximum	ect = (0, 0, 1, 1, lting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each	$(0, 1, 0)$. Then, $P_{global} = 0.4286$, P'_{global}	Deleted: 6667 Deleted: the been the
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P Fine LZ78Y predictor for adding strings to the dictional dictionary has reached substring in the most r	Predi is loo the d ary se ed its recen	and the result action Estimates osely based ictionary. To o far, and maximum t <i>B</i> samples	ect = (0, 0, 1, 1, 1) Iting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa peps a dictionary of strings that have to g new strings to the dictionary until n time that a sample is processed, e ionary or is added to the dictionary.	Deleted: 6667 Deleted: the been the
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P Fine LZ78Y predictor for adding strings to the dictional dictionary has reached substring in the most r Given the input $S = (s_1$ 1. Let $B = 16$, and	Predi is loo the d ary so ed its recen	and the result ction Esti osely based ictionary. To o far, and of maximum t <i>B</i> samples s_L , where $a_L = B - 1$. I	ect = $(0, 0, 1, 1, 1)$ Iting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict $s_i \in A = \{x_{1_m}, \dots, y_{n_i}\}$ Let correct be an	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa peps a dictionary of strings that have to g new strings to the dictionary until n time that a sample is processed, e ionary or is added to the dictionary.	Deleted: 6667 Deleted: the Deen the very Deleted:,
0.9490 , $P_{local} = 0,13$ 5.3.10 The LZ78Y P The LZ78Y predictor for adding strings to t idded to the dictional lictionary has reached ubstring in the most r Given the input $S = (s_1$ 1. Let $B = 16$, and to 0. Let <i>maxL</i>	Predi is loo the d ary sed its recen n_1, \dots, n_n d $N =$ Dictio	and the result action Estimates and the result obselves based ictionary. To o far, and of maximum t <i>B</i> samples (s_L) , where $(L - B - 1, 1)$ on ary Size =	ect = $(0, 0, 1, 1, 1)$ lting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict $s_i \in A = \{x_{1_0, \dots, N_i}\}$ Let <i>correct</i> be an <u>65 536</u> .	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa reps a dictionary of strings that have b g new strings to the dictionary until n time that a sample is processed, er ionary or is added to the dictionary. r_k }, array of <i>N</i> Boolean values, each initial	Deleted: 6667 Deleted: the Deeen the very Deleted: ,,
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P Che LZ78Y predictor for adding strings to t idded to the dictional lictionary has reached ubstring in the most r Given the input $S = (s_1$ 1. Let $B = 16$, and	Predi is loo the d ary sed its recen	and the result action Estimates and the result obselves based ictionary. To o far, and of maximum t <i>B</i> samples (s_L) , where $(L - B - 1, 1)$ on ary Size =	ect = $(0, 0, 1, 1, 1)$ lting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict $s_i \in A = \{x_{1_0, \dots, N_i}\}$ Let <i>correct</i> be an <u>65 536</u> .	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa reps a dictionary of strings that have b g new strings to the dictionary until n time that a sample is processed, er ionary or is added to the dictionary. r_k }, array of <i>N</i> Boolean values, each initial	Deleted: 6667 Deleted: the Deeen the very Deleted: ,,
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P The LZ78Y predictor for adding strings to the dided to the dictional dictionary has reached substring in the most r Given the input $S = (s_1)$ 1. Let $B = 16$, and to 0. Let maxL 2. Let D be an err 3. For $i_{\underline{s}} = B + 2$ to	807, a state of the darry size	and the result of the result obselves based ictionary. To o far, and of maximum t <i>B</i> samples s_L , where s_{L-B-1} . I conarySize = dictionary. I	ect = $(0, 0, 1, 1, 1)$ lting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict $s_i \in A = \{x_{1_0, \dots, N_i}\}$ Let <i>correct</i> be an <u>65 536</u> .	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa reps a dictionary of strings that have b g new strings to the dictionary until n time that a sample is processed, er ionary or is added to the dictionary. r_k }, array of <i>N</i> Boolean values, each initial	Deleted: 6667 Deleted: the Deleted: the Deleted: ,, Deleted: 65536 Deleted: 65536
0.9490, $P_{local} = 0,13$ 6.3.10 The LZ78Y P Fine LZ78Y predictor for adding strings to the dictional dictionary has reached substring in the most r Given the input $S = (s_1)$ 1. Let $B = 16$, and to 0. Let maxL 2. Let D be an err 3. For $i = B+2$ to a. For $j = B$	Predi is low the d ary set ed its recen	and the result of the result of the result	ect = $(0, 0, 1, 1, 1)$ Iting min-entrop mate on LZ78 encodi The predictor ke continues adding capacity. Each updates the dict $s_i \in A = \{x_1, \dots, y_{i}\}$ Let correct be an $\frac{65}{536}$.	0, 1, 0). Then, $P_{global} = 0.4286$, P'_{global} y estimate is 0.0755. ng with Bernstein's Yabba scheme [Sa reps a dictionary of strings that have b g new strings to the dictionary until n time that a sample is processed, er ionary or is added to the dictionary. r_k }, array of <i>N</i> Boolean values, each initial	Deleted: 6667 Deleted: the Deleted:, Deleted: 65536 Deleted: 65536

IST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	_	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Second >	Formatted: Small caps
_			Formatted: Small caps
	Let $D[s_{ij-1},, s_{i-2}]$ be added to the dictionary.		·
2	Let $D[s_{i:j-1},, s_{i-2}][s_{i-1}] = 0.$		
3	dictionarySize = dictionarySize + 1		
ii. If (<i>s</i> _{<i>i</i>-1}	$(i-1, \ldots, s_{i-2})$ is in <i>D</i> ,		
1	Let $D[s_{i-j-1}, \ldots, s_{i-2}][s_{i-1}] = D[s_{i-j-1}, \ldots, s_{i-2}][s_{i-1}] + 1.$	(Formatted: Font: Italic
	ionary to predict the next value, s_i . Let <i>prediction</i> = <i>Null</i> , and let 0. For $j = B$ down to 1:		
i. Let p	$rev = (s_{i_{\overline{v}}j_1}, \ldots, s_{i_{\overline{v}}-1}).$	(Deleted:
ii. If <i>pr</i>	ev is in the dictionary, find the $y \in \{x_1, \dots, x_k\}$ that has the highest		Deleted:
	ev][y] value. In the event of a tie, let the y be the symbol with the higher	(Deleted: ,,
	value. For example, if <i>D</i> [prev][1] and <i>D</i> [prev][5] both have the highest		
value	y_{z} , then $y = 5$.		
iii. If <i>D</i> []	prev][y] > maxcount:		
1	prediction = y.		
2	maxcount = D[prev][y].		
c. If (prediction	$n = s_i$), let $correct_{i_{\mathbf{r}}B_{\mathbf{r}}1} = 1$.	\leq	Deleted:
4. Calculate the predict	tor's global performance <u>as</u> $P_{global} = \frac{c}{N_{y}}$. The upper bound of the 99 %		Deleted:
confidence interval	$\frac{p_{global}}{p_{global}} \frac{p_{global}}{p_{global}} \frac{p_{global}}{p_$	$\langle \rangle$	Deleted: Let C be the number of ones in correct. Deleted: a 99% upper bound on
			Deleted: as:
<i>D'</i>	$1 - 0.01 \overline{N}, \qquad \qquad \text{if } P_{global} = 0,$		
$P_{global} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$1 - 0.01 \frac{\frac{1}{N}}{N}, \qquad \text{if } P_{global} = 0,$ $(1, P_{global} + 2.576 \sqrt{\frac{P_{global} (1 - P_{global})}{N-1}}), \qquad \text{otherwise}$		
where 2.576 corresp	onds to the $Z_{(1-0.005)}$ value.		
5. Calculate the predict	tor's local performance, based on the longest run of correct predictions.		
Let r be one greater	r than the length of the longest run of ones in <i>correct</i> . Use a binary		
search to solve the f	ollowing for <i>P_{local}</i> :		
	$0.99 = \frac{1 - P_{local}x}{(r+1 - rx)q} \times \frac{1}{x^{N+1}},$		
where $q = 1 - P_{loco}$	and $x = x_{10}$, derived by iterating the recurrence relation		
	$x_j = 1 + q P_{local}^r x_{j-1}^{r+1}$		
for <i>j</i> from 1 to 10, equations is robust a calculated values of	and $x_{0} = 1$. Note that solving for P_{local} using the logarithm of these against overflows. Table 3 given in Appendix G.2 provides some pre- P_{local} .	(Deleted: =1.
6. The min-entropy is	the negative logarithm of the greater performance metric		

 $min-entropy = -\log_2\left(\max\left(P'_{global}, \frac{P_{local}, \frac{1}{k}}{P_{local}, \frac{1}{k}}\right)\right).$

Example: Suppose that S = (2, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2), and L = 13. For the purpose of this example, suppose that B = 4 (instead of 16), then N = 8.

į	Add to D	prev	Max D[prev] entry	prediction	Si	correct _{i-B-1}
6	D[2, 1, 3, 2][1]	(1, 3, 2, 1)	Null	Null	3	0
	D[1, 3, 2][1]	(3, 2, 1)	Null			
	D[3, 2][1]	(2, 1)	Null			
	D[2][1]	(1)	Null			
7	<i>D</i> [1, 3, 2, 1][3]	(3, 2, 1, 3)	Null	Null	1	0
	D[3, 2, 1][3]	(2, 1, 3)	Null			
	<i>D</i> [2, 1][3]	(1, 3)	Null			
	<i>D</i> [1][3]	(3)	Null			
8	<i>D</i> [3, 2, 1, 3][1]	(2, 1, 3, 1)	Null	3	3	1
	<i>D</i> [2, 1, 3][1]	(1, 3, 1)	Null			
	<i>D</i> [1, 3][1]	(3, 1)	Null			
	<i>D</i> [3][1]	(1)	3			
9	<i>D</i> [2, 1, 3, 1][3]	(1, 3, 1, 3)	Null	1	1	1
	D[1, 3, 1][3]	(3, 1, 3)	Null			
	<i>D</i> [3, 1][3]	(1, 3)	1			
	D[1][3]	(3)	1			
10	<i>D</i> [1, 3, 1, 3][1]	(3, 1, 3, 1)	Null	3	2	0
	<i>D</i> [3, 1, 3][1]	(1, 3, 1)	3	-		
	<i>D</i> [1, 3][1]	(3, 1)	3	-		
	D[3][1]	(1)	3			
11	<i>D</i> [3, 1, 3, 1][2]	(1, 3, 1, 2)	Null	1	1	1
	D[1, 3, 1][2]	(3, 1, 2)	Null	-		
	D[3, 1][2]	(1, 2)	Null	-		
	D[1][2]	(2)	1			
12	D[1, 3, 1, 2][1]	(3, 1, 2, 1)	Null	3	3	1
	D[3, 1, 2][1]	(1, 2, 1)	Null	-		
	D[1, 2][1]	(2, 1)	3	-		
	D[2][1]	(1)	3			
13	<i>D</i> [3, 1, 2, 1][3]	(1, 2, 1, 3)	Null	1	2	0
	D[1, 2, 1][3]	(2, 1, 3)	1	4		
	D[2, 1][3]	(1, 3)	1	-		
	D[1][3]	(3)	1			

After the predictions are all made, correct = (0, 0, 1, 1, 0, 1, 1, 0). Then, $P_{global} = 0.5$, $P'_{global} = 0.9868$, $P_{local} = 0.1229$, and the resulting min-entropy estimate is 0.0191.

Deleted: 6667

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
A	Used for Random Bit Generation	Formatted: Small caps
6.4 Paducing the Symbol Spee		Formatted: Small caps
6.4 Reducing the <u>Symbol</u> Spac		Deleted: Sample
It is often the case that the data requi	rements for a test on noise source samples depends on the	
	from the noise source (i.e., the size of the alphabet A, denoted	Deleted: bitstrings
	nt noise sources. The first source outputs 4-bit samples, and	Deleted: four
	erent, symbols, and the second source outputs 32-bit samples,	Deleted: outputs
for a possible total of 2 ³² different syn	<u>nbols</u> .	Deleted: outputs
concentrated among some portion of t that outputs 32-bit high-precision clos system process. Suppose that the bits lower-order bits of the sample corresp easy to imagine that in this case, the li it would seem likely that some of the would be reasonable to truncate the 32 perform the tests on the 4-bit strings. C of 4 bits of min-entropy per sample c	output that contributes to the entropy in a sample may be the bits in the sample. For example, consider a noise source ck samples that represent the time it takes to perform some in a sample are ordered in the conventional way, so that the ond to the higher resolution measurements of the clock. It is ow-order bits would contain most of the variability. In fact, e high-order bits may be constantly 0. For this example, it 2-bit sample to a 4 -bit string by taking the lower 4 bits, and Df course, it must be noted that in this case, only a maximum ould be credited to the noise source. an example of a method for mapping the <i>n</i> -bit samples,	Deleted: four Deleted: four Deleted: four Deleted: four
collected as specified in Section 1.1.1, used as input to tests that may have	to <i>m</i> -bit samples, where $n \ge m$. The resulting strings can be ve infeasible data requirements if the mapping were not ng is performed, the maximum amount of entropy possible	Deleted: description
	n-bit samples, where n exceeds the bit-length that can be	
	provide the tester with an ordered ranking of the bits in the	Deleted: shall
the most entropy to the sample, and amount. If multiple bits contribute	rank of '1' corresponds to the bit assumed to be contributing the rank of n corresponds to the bit contributing the least the same amount of entropy, the ranks can be assigned wing algorithm, or its equivalent, is used to assign ranks.	Formatted: Font: Bold
Input : A noise source and correspond where each a_i is a bit.	ing statistical model with samples of the form $X = a_1 a_2 \dots a_n$,	
Output : An ordered ranking of the bibit is assumed to contribute to the noise	its a_1 through a_n , based on the amount of entropy that each se source outputs.	
1. Set $M = \{a_1, a_2,, a_n\}$.		
2. For $i = 1$ to <i>n</i> :		
	from M such that no other bit in \underline{M} is assumed to	Deleted: S
contribute more entrop	y to the noise source samples than <i>a</i> .	
b. Set the <u>ranking</u> of <i>a</i> to	i	Deleted: rank
c. Remove <i>a</i> from <i>M</i> .		
	mapped to m -bit samples by simply taking the m -bits of m -bit string is the bit from an n -bit sample with rank 1, bit	

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
۸	USED FOR RANDOM BIT GENERATION		Formatted: Small caps
2 of the <i>m</i> -bit string is the bit from an <i>n</i> -bit the bit from an <i>n</i> -bit sample with rank m).	t sample with rank 2, and bit m of the m -bit string is		Formatted: Small caps
	reference to a sample in the dataset will be interpreted mple when the test necessitates processing the dataset		
	ive method to reduce symbol size. The submitter shall thod they use and an argument as to why this method is provided.		
<u>۸</u>		****	Formatted: Font: Times New Roman, Not Bold, Font color: Auto

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Deleted: (2nd Draft) Formatted: Small caps Formatted: Small caps

Appendix A—Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

AES	Advanced Encryption Standard
API	Application Programming Interface
ANS	American National Standard
CAVP	Cryptographic Algorithm Validation Program
CBC-MAC	Cipher Block Chaining Message Authentication Code
CMVP	Cryptographic Module Validation Program
DRBG	Deterministic Random Bit Generator
FIPS	Federal Information Processing Standard
HMAC	Hash-based Message Authentication Code
IID	Independent and Identically Distributed
LRS	Longest Repeated Substring
NIST	National Institute of Standards and Technology
NRBG	Non-deterministic Random Bit Generator
NVLAP	National Voluntary Laboratory Accreditation Program
<u>RAM</u>	Random Access Memory
RBG	Random Bit Generator
SP	NIST Special Publication

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
A	Used for Random Bit Generation	Formatted: Small caps
		Formatted: Small caps
Appendix B—Glossa	ry	
Alphabet	A finite set of two or more symbols.	
Alphabet size	The number of distinct symbols that the noise source produces.	Deleted: See sample size.
Algorithm	A clearly specified mathematical process for computation; a set of rules that, if followed, will give a prescribed result.	
Approved	FIPS-approved or NIST-Recommended.	
Array	A fixed-length data structure that stores a collection of elements, where each element is identified by its integer index.	
Assessment (of entropy)	An evaluation of the amount of entropy provided by a (digitized) noise source and/or the entropy source that employs it.	
Biased	A value that is chosen from <u>an alphabet</u> space is said to be biased if one value is more likely to be chosen than another value. (Contrast with unbiased.)	Deleted: a sample
Binary data (from a noise source)	Digitized output from a noise source that consists of a single bit; that is, each sampled output value is represented as either 0 or 1.	Deleted: and possibly post-processed
Bitstring	An ordered sequence of 0's and 1's. The leftmost bit is the most significant bit.	Deleted: A bitstring is an
Collision	An instance of duplicate sample values occurring in a dataset.	
Conditioning (of noise source output)	A method of processing the raw data to reduce bias and/or ensure that the entropy rate of the conditioned output is no less than some specified amount.	
	An interval estimate [low, high] of a population parameter. If the	Deleted:
	population is repeatedly sampled, and confidence intervals are	Deleted:], where the true value
Confidence interval	<u>computed</u> for each sample with significance level α ,	Deleted: p falls within that interval with a stated probability. E.g., a 95%
	approximately $100(1-\alpha)$ % of the intervals are expected to contain the true population parameter.	Deleted: interval about an estimate
		Deleted: <i>p</i> yields values for <i>low</i> and <i>high</i> such that $low \le p \le high$ with ambability 0.05
Continuous test	A type of health test performed within an entropy source on the output of its noise source in order to gain some level of assurance that the noise source is working correctly, prior to producing each output from the entropy source.	with probability 0.95.
Consuming application (for an RBG)	An application that uses the output from an approved random bit generator.	
Dataset	A sequence of sample values. (See Sample.)	Formatted: Font: Italic

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

l

NIST SP 800-90B

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION		Formatted: Small caps
Deterministic Random Bit Generator (DRBG)	An RBG that includes a DRBG mechanism and (at least initially) has access to a source of entropy input. The DRBG produces a sequence of bits from a secret initial value called a seed, along with other possible inputs. A DRBG is often called a Pseudorandom Number (or Bit) Generator.	(Formatted: Small caps
Developer	The party that develops the entire entropy source or the noise source.		
Dictionary	A dynamic-length data structure that stores a collection of elements or values, where a unique label identifies each element. The label can be any data type.		
Digitization	The process of generating bits from the noise source.		
DRBG mechanism	The portion of an RBG that includes the functions necessary to instantiate and uninstantiate the RBG, generate pseudorandom bits, (optionally) reseed the RBG and test the health of the DRBG mechanism. Approved DRBG mechanisms are specified in SP 800-90A.		
Entropy	A measure of the disorder, randomness or variability in a closed system. Min-entropy is the measure used in this Recommendation.		
Entropy rate,	The rate at which a digitized noise source (or entropy source) provides entropy; it is computed as the assessed amount of entropy provided by a bitstring output from the source, divided by the total number of bits in the bitstring (yielding the assessed bits of entropy per output bit). This will be a value between zero (no entropy) and one.	(Deleted: 1
Entropy source	The combination of a noise source, health tests, and an optional conditioning component that produce random bitstrings to be used by an RBG.		
Estimate	The estimated value of a parameter, as computed using an estimator.		
Estimator	A technique for estimating the value of a parameter.		
False positive	An erroneous acceptance of the hypothesis that a statistically significant event has been observed. This is also referred to as a type 1 error. When "health-testing" the components of a device, it often refers to a declaration that a component has malfunctioned – based on some statistical test(s) – despite the fact that the component was actually working correctly.		

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
<u>Global performance</u> <u>metric</u>	For a predictor, the number of accurate predictions over a long period.	Formatted: Small caps
Health testing	Testing within an implementation immediately prior to or during normal operation to determine that the implementation continues to perform as implemented and as validated.	
Independent	Two random variables X and Y are independent if they do not convey information about each other. Receiving information about X does not change the assessment of the probability distribution of Y (and vice versa).	
Independent and Identically Distributed (IID)	<u>A quality of a sequence of random variables for which each</u> element of the sequence has the same probability distribution as the other values, and all values are mutually independent.	Deleted: A
List	A dynamic-length data structure that stores a sequence of values, where each value is identified by its integer index.	
<u>Local performance</u> metric	For a predictor, the length of the longest run of correct predictions	
Markov model	A model for a probability distribution where the probability that the i^{th} element of a sequence has a given value depends only on the values of the previous <i>n</i> elements of the sequence. The model is called an n^{th} order Markov model.	
Min-entropy	The min-entropy (in bits) of a random variable X is the largest value m having the property that each observation of X provides at least m bits of information (i.e., the min-entropy of X is the greatest lower bound for the information content of potential observations of X). The min-entropy of a random variable is a lower bound on its entropy. The precise formulation for min- entropy is (log ₂ max p_i) for a discrete distribution having probabilities $p_1,,p_k$. Min-entropy is often used as a worst-case measure of the unpredictability of a random variable.	Deleted:,
Narrowest internal width	The maximum amount of information from the input that can affect the output. For example, if $f(x) = SHA-1(x) \parallel 01$, and x consists of a string of 1000 binary bits, then the narrowest internal width of $f(x)$ is 160 bits (the SHA-1 output length), and the output width of $f(x)$ is 162 bits (the 160 bits from the SHA-1 operation, concatenated by 01).	Deleted:
Noise source	The component of an entropy source that contains the non- deterministic, entropy-producing activity, (e.g., thermal noise or	Deleted:
	hard drive seek times).	Deleted:)

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-908 I

l

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES Used FOR RANDOM BIT GENERATION	(Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION		Formatted: Small caps
Non-deterministic	An RBG that <u>always</u> has access to an entropy source and (when working properly) produces outputs that have full entropy (see SP		Formatted: Small caps
Random Bit Generator	800-90C). Also called a <i>true random bit</i> (or <i>number</i>) generator,		Deleted:
(NRBG)	(Contrast with a <i>DRBG</i>).		Formatted: Font: Italic
	(contrast with a proof.		Deleted:)
<u>Non-physical non-</u> <u>deterministic random</u> <u>bit generator</u>	An entropy source that does not use dedicated hardware but uses system resources (RAM content, thread number etc.) or the interaction of the user (time between keystrokes etc.).		
On-demand test	A type of health test that is available to be run whenever a user or a relying component requests it.		
Output space	The set of all possible distinct bitstrings that may be obtained as samples from a digitized noise source.		
P-value	The probability that the chosen test statistic will assume values that are equal to or more extreme than the observed test statistic value, assuming that the null hypothesis is true.		
Predictor	A function that predicts the next value in a sequence, based on previously observed values in the sequence.		
Probability distribution	A function that assigns a probability to each measurable subset of the possible outcomes of a random variable.		
Probability model	A mathematical representation of a random phenomenon.		
Pseudorandom	A deterministic process (or data produced by such a process) whose output values are effectively indistinguishable from those of a random process as long as the internal states and internal actions of the process are unknown. For cryptographic purposes, "effectively indistinguishable" means "not within the computational limits established by the intended security strength."		Deleted: ,
Random Bit Generator (RBG)	A device or algorithm that outputs a random sequence that is effectively indistinguishable from statistically independent and unbiased bits. An RBG is classified as either a DRBG or an NRBG.		Deleted: Random [157]
Raw data	Digitized output of the noise source.		Deleted: and possibly post-processed
<u>Physical non-</u> <u>deterministic random</u> <u>bit generator</u>	An entropy source that uses dedicated hardware or uses a physical experiment (noisy diode(s), oscillators, event sampling like radioactive decay, etc.)		

NST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
Run (of output sequences)	A sequence of identical values.	Formatted: Small caps
Sample	An observation of the raw data <u>output by a noise source</u> . Common examples of output values obtained by sampling are single bits, single bytes, etc. (The term "sample" is often extended to denote a sequence of such observations; this Recommendation will refrain from that practice.)	
Security boundary	A conceptual boundary that is used to assess the amount of entropy provided by the values output from an entropy source. The entropy assessment is performed under the assumption that any observer (including any adversary) is outside of that boundary.	Deleted: Sample size [158]
Sequence	An ordered list of quantities.	Deleted: Seed [159]
Shall	The term used to indicate a requirement that needs to be fulfilled to claim conformance to this Recommendation. Note that shall may be coupled with not to become shall not .	
Should	The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable results. Note that should may be coupled with not to become should not .	
Start-up testing	A suite of health tests that are performed every time the entropy source is initialized or powered up. These tests are carried out on the noise source before any output is released from the entropy source.	
Stochastic model	A stochastic model is a mathematical description (of the relevant properties) of an entropy source using random variables. A stochastic model used for an entropy source analysis is used to support the estimation of the entropy of the digitized data and finally of the raw data. In particular, the model is intended to provide a family of distributions, which contains the true (but unknown) distribution of the noise source outputs. Moreover, the stochastic model should allow an understanding of the factors that may affect the entropy. The distribution of the entropy source needs to remain in the family of distributions, even if the quality of the digitized data goes down.	
Submitter	The party that submits the entire entropy source and output from its components for validation. The submitter can be any entity that can provide validation information as required by this Recommendation (e.g., developer, designer, vendor or any organization).	

I

I

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted: (2 nd Draft)
A	USED FOR RANDOM BIT GENERATION	 Formatted: Small caps
<u>Symbol</u>	The value of the noise source output (i.e., sample value).	Formatted: Small caps
Testing laboratory	An accredited cryptographic security testing laboratory.	
<u>Type I error</u>	Incorrectly rejection of a true null hypothesis.	
	A value that is chosen from a sample space is said to be unbiased	 Deleted:
Unbiased	if all potential values have the same probability of being chosen.	Deleted:
	(Contrast with <i>biased</i> .)	Deleted:
		Deleted:
A		Deleted:
		Deleted:
	<u>۸</u>	Deleted:
		Deleted:
		Deleted:
		Deleted:

Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted:

Deleted:

Formatted: Font: Italic

Formatted: Font: Times New Roman, Font color: Auto Formatted: Font: Times New Roman, Not Bold, Font color: Auto

NST SP 800-90		Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
Appendix C		Formatted: Small caps
[BZ2]	BZIP2 Compression Algorithm. http://www.bzip.org/.	
[Cac97]	C. Cachin, <i>Entropy Measures and Unconditional Security in Cryptography</i> , PhD Thesis, Reprint as vol.1 of ETH Series in Information Security and Cryptography, ISBN 3-89649-185-7, Hartung-Gorre Verlag, Konstanz, ETH Zurich, 1997.	
[CoNa98]	J.S. Coron, D. Naccache, An Accurate Evaluation of Maurer's Universal Test, Selected Areas in Cryptography 1998: 57-71	
[Fel50]	W. Feller, An Introduction to Probability Theory and its Applications, volume one, chapter 13, John Wiley and Sons, Inc., 1950.	
[FIPS140]	Federal Information Processing Standard 140-2, <i>Security Requirements for Cryptographic Modules</i> , May 25, 2001. https://doi.org/10.6028/NIST.FIPS.140-2.	
[FIPS180]	Federal Information Processing Standard 180-4, Secure Hash Standard (SHS), August 2015. <u>https://doi.org/10.6028/NIST.FIPS.180-4.</u>	
[FIPS197]	Federal Information Processing Standard 197, Specification for the Advanced Encryption Standard (AES), November 2001, <u>https://doi.org/10.6028/NIST.FIPS.197.</u>	Deleted:
[FIPS198]	Federal Information Processing Standard 198-1, The Keyed-Hash MessageAuthenticationCode(HMAC), July2008. https://doi.org/10.6028/NIST.FIPS.198-1 .	
[FIPS202]	Federal Information Processing Standard 202, SHA-3 Standard: Permutation- Based Hash and Extendable-Output Functions, August 2015. https://doi.org/10.6028/NIST.FIPS.202.	
[HaFis15]	P. Haddad, V. Fischer, F. Bernard, Jean Nicolai, A Physical Approach for Stochastic Modeling of TERO-Based TRNG. CHES 2015: 357-372	
[HD12]	P. Hagerty and T. Draper, <i>Entropy Bounds and Statistical Tests</i> , NIST Random Bit Generation Workshop, December 2012, https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop- 2012/documents/hagerty_entropy_paper.pdf. (Presentation available at https://csrc.nist.gov/csrc/media/events/random-bit-generation-workshop- 2012/documents/hagerty_entropy_paper.pdf.)	Deleted: http://csrc.nist.gov/groups/ST/rbg_workshop_2012/hage ty_entropy_paper.pdf. (Presentation available at http://csrc.nist.gov/groups/ST/rbg_workshop_2012/hagerty_pdf.)
[IG140-2]	National Institute of Standards and Technology, Communications Security Establishment Canada, Implementation Guidance for FIPS PUB 140-2 and	Deleted: Special Publication

NIST SP 800-90E		Deleted: (2 nd Draft)
	Used for Random Bit Generation	Formatted: Small caps
	the Cryptographic Module Validation Program, (last updated) September 11,	Formatted: Small caps
	2017, https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-	Deleted: September 15, 2015
	Validation-Program/documents/fips140-2/FIPS1402IG.pdf.	
	vandauon-Program/documents/hps140-2/FIPS140210.pdf.	
[Kel15]	J. Kelsey, Kerry A. McKay, M. Sonmez Turan, Predictive Models for Min-	
	Entropy Estimation, Proceedings of the Workshop on Cryptographic	
	Hardware and Embedded Systems 2015 (CHES 2015), France.	
	https://doi.org/10.1007/978-3-662-48324-4_19.	
[Mau92]	U. Maurer, A Universal Statistical Test for Random Bit Generators, Journal	
	of Cryptology, Vol. 5, No. 2, 1992, pp. 89-105.	
RaSt98]	M. Raab, A. Steger: Balls into Bins - A Simple and Tight Analysis. RANDOM	
<u>[Ra5t76]</u>	1998: 159-170.	
[Sal07]	D. Salomon, Data Compression: The Complete Reference, Chapter 3,	
[]	Springer, 2007	
[Shan51]	C.E Shannon, Prediction and Entropy of Printed English, Bell System	
	Technical Journal, volume 30, pp. 50-64, January 1951,	
	https://archive.org/details/bstj30-1-50.	
[SP800-38B]	National Institute of Standards and Technology Special Publication (SP) 800-	
	38B Recommendations for Block Cipher Modes of Operation: The CMAC	
	Mode for Authentication, May 2005 (updated October 6, 2016),	
	https://doi.org/10.6028/NIST.SP.800-38B.	
[SP800-57]	National Institute of Standards and Technology Special Publication (SP) 800-	
[]	57 Part 1 Revision 4, Recommendation for Key Management – Part 1:	Deleted: I
	General, January 2016. https://doi.org/10.6028/NIST.SP.800-57pt1r4.	Deleted: (Revision 3),
[SP800-90A]	National Institute of Standards and Technology Special Publication (SP) 800-	
	90A <u>Revision 1</u> , Recommendation for Random Number Generation Using	
	Deterministic Random Bit Generators, June 2015.	
	https://doi.org/10.6028/NIST.SP.800-90Ar1.	
[SP800-90C]	National Institute of Standards and Technology Special Publication (SP)	
	800-90C (Draft), Recommendations for Random Bit Generator (RBG)	Deleted: ,
	Constructions, April 2016. https://csrc.nist.gov/publications/detail/sp/800-	Deleted: Draft.
	<u>90c/draft.</u>	
[SP800-107]	National Institute of Standards and Technology Special Publication (SP) 800-	
	107, Revision 1, Recommendations for Applications using Approved Hash	Deleted: ,
	Algorithms, August 2012. https://doi.org/10.6028/NIST.SP.800-107r1.	Deleted: Functions

NIST SP 800-90B

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION Deleted: (2nd Draft) Formatted: Small caps Formatted: Small caps

Appendix D— Min-Entropy and Optimum Guessing Attack Cost

Suppose that an adversary wants to determine at least one of several secret values, where each secret value is independently chosen from a set of *M* possibilities, with probability distribution $P = \{p_1, p_2, ..., p_M\}$. Assume that these probabilities are sorted so that $p_1 \ge p_2 \ge ... \ge p_M$. Consider a guessing strategy aimed at successfully guessing as many secret values as possible. The adversary's goal would be to minimize the expected number of guesses per successful recovery. Such a strategy would consist of guessing a maximum of *k* possibilities for a given secret value, moving on to a new secret value when either a guess is correct₂ or *k* incorrect guesses for the current value have been made. In general, the optimum value of *k* can be anywhere in the range $1 \le k \le M$, depending on the probability distribution *P*. Note that when k = M, the M^{th} guess is considered a valid (though trivial) guess. Regardless of the value of *k* chosen, it is clear that the *k* guesses selected for a given secret value should be the *k* most likely possible values, in decreasing order of probability.

The expected work per success can be computed for this attack as follows. For $1 \le j \le k - 1$, the attacker will make exactly *j* guesses if the secret value is the *j*th most likely value, an event having probability p_j . The attacker will make exactly *k* guesses if the secret value is not any of the k - 1 most likely values, an event having probability $1 - \sum_{j=1}^{k-1} p_j$. Thus, the expected number of guesses for the attack is given by the following:

$$p_1 + 2p_2 + \dots + (k-1)p_{k-1} + k\left(1 - \sum_{j=1}^{k-1} p_j\right).$$

Since this attack will be successful if and only if the secret value is one of the *k* most likely possibilities, which is the case with probability $\sum_{j=1}^{k} p_j$, the expected number of times the attack must be performed until the first success is the reciprocal of this probability. Multiplying this reciprocal by the expected number of guesses per attack gives the following as the expected work per success:

$$W_k(P) = \frac{p_1 + 2p_2 + \dots + (k-1)p_{k-1} + k\left(1 - \sum_{j=1}^{k-1} p_j\right)}{\sum_{j=1}^{k} p_j}.$$

It is not critical to determine the value k^* that minimizes $W_k(P)$, since the min-entropy of *P* leads to an accurate approximation (and sometimes the exact value) of $W_{k^*}(P)$. Stated more precisely, $W_1(P) = \frac{1}{p_1}$ is an upper bound of $W_{k^*}(P)$, and it can be shown that $W_k(P) \ge \frac{1}{2p_1} + \frac{1}{2}$ for all *k* such that $1 \le k \le M$. Since the min-entropy of *P* is $-\log_2(p_1)$, these two bounds imply that the error between the min-entropy of *P* and $\log_2(W_{k^*}(P))$ can be bounded as follows:

 $0 \leq -\log_2 p_1 - \log_2 (W_{k^*}(P)) \leq 1 - \log_2 (p_1 + 1).$

Notice that since $\frac{1}{M} \leq p_1 \leq 1$, the upper bound on the error approaches 0 as $p_1 \to 1$, and alternatively, this bound approaches 1 as $M \to \infty$ and $p_1 \to \frac{1}{M}$. In other words, the min-entropy of

Deleted: (2 nd Draft)	
Formatted: Small caps	
Formatted: Small caps	

P either corresponds to the exact expected work, measured in bits, needed to perform the optimum guessing attack or over-estimates this work by at most one bit.

In order to prove the claim that $W_k(P) \ge \frac{1}{2p_1} + \frac{1}{2}$, for $1 \le k \le M$, rewrite the expected work per success as

$$W_k(P) = \frac{1 + (1 - p_1) + (1 - p_1 - p_2) + \dots + (1 - p_1 - p_2 - \dots - p_{k-1})}{p_1 + p_2 + \dots + p_k}.$$

Consider an alternative probability distribution on a set of M possibilities $P' = \{p_1, p_1, \dots, p_1, r, 0, \dots, 0\}$, where p_1 occurs $t = \lfloor \frac{1}{p_1} \rfloor$ times and $r = 1 - tp_1$. It is straightforward to see that $W_k(P) \ge W_k(P')$, since each term in the numerator of $W_k(P)$ is at least as large as the corresponding term in $W_k(P')$, and the denominator of $W_k(P')$ is at least as large as the denominator of $W_k(P)$.

Now to show that $W_k(P') \ge \frac{1}{2p_1} + \frac{1}{2}$. Based on the above formula for $W_k(P)$, for $1 \le k \le t + 1$, the numerator of $W_k(P')$ can be written as

$$\sum_{i=0}^{k-1} (1-ip_1) = k - \frac{k(k-1)}{2} p_1 = k p_1 \left(\frac{1}{p_1} - \frac{k-1}{2}\right)$$

Consider the following two cases where $1 \le k \le t$ and k = t + 1. These are the only cases to check, since if M > t + 1, then $W_k(P') = W_{t+1}(P')$ for k > t + 1, because the remaining probabilities are all zero. Furthermore, r = 0 if and only if $\frac{1}{p_1}$ is an integer, and when this happens, only the first case needs to be addressed since $W_{t+1}(P') = W_t(P')$.

For $1 \le k \le t$, the denominator of $W_k(P') = kp_1$. Then,

$$W_{k}(P') = \frac{kp_{1}\left(\frac{1}{p_{1}} - \frac{k-1}{2}\right)}{kp_{1}} = \frac{1}{p_{1}} - \frac{k-1}{2},$$

$$\geq \frac{1}{p_{1}} - \frac{1}{2}\left(\left|\frac{1}{p_{1}}\right| - 1\right),$$

$$\geq \frac{1}{p_{1}} - \frac{1}{2}\left(\frac{1}{p_{1}} - 1\right),$$

$$\geq \frac{1}{2p_{1}} + \frac{1}{2}.$$

For k = t + 1, the denominator of $W_k(P')$ is $tp_1 + r = 1$. Let $x = \frac{1}{p_1} - \lfloor \frac{1}{p_1} \rfloor$, so $0 \le x < 1$. This implies

$$W_k(P') = k p_1 \left(\frac{1}{p_1} - \frac{k-1}{2} \right) = \left(\left| \frac{1}{p_1} \right| + 1 \right) p_1 \left(\frac{1}{p_1} - \frac{1}{2} \left| \frac{1}{p_1} \right| \right),$$

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES		Deleted: (2 nd Draft)
.	USED FOR RANDOM BIT GENERATION	······	Formatted: Small caps
	$= \left(\frac{1}{p_1} - x + 1\right) \left(\frac{1}{2} + \frac{p_1 x}{2}\right),$	(Formatted: Small caps

$$= \left(\frac{p_1}{p_1} - x + 1\right) \left(\frac{1}{2} + \frac{1}{2}\right),$$

$$= \frac{1}{2p_1} + \frac{1}{2} + \frac{p_1 x (1 - x)}{2},$$

$$\ge \frac{1}{2p_1} + \frac{1}{2}.$$

Therefore, it has been shown that $W_k(P) \ge W_k(P') \ge \frac{1}{2p_1} + \frac{1}{2}$ for $1 \le k \le M$. Note that this lower bound is sharp, since $W_k(P)$ achieves this value when P is a uniform distribution.

... [160]

<#>input

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	 Deleted: (2 nd Draft)
A	USED FOR RANDOM BIT GENERATION	 Formatted: Small caps
Appendix E—The Narrowest Ir	nternal Width	 (Formatted: Small caps
The narrowest internal width of a co state that is dependent on the input (across all steps of making up the cor	nditioning component is the <u>minimum number of bits of the</u> to the functions, and influences the output of the function <u>ditioning function</u> . It can also be considered as the logarithm distinct outputs, based on the size of the internal state.	 Deleted: maximum amount of information from the input that can affect the output.
<i>Example:</i> Let $F(X)$ be a function defined as $F(X) = F(X)$.	ned as follows:	
1. Let h_1 be the output of SHA-256		 Deleted: SHA256
2. Return <u>SHA-256($h_1 \parallel h_1$)</u> truncate	d to 128 bits.	 Deleted: SHA256

This function takes an arbitrarily-long input *X* and will yield 128-bit output value, but its internal width is only 64 bits, because the value of the output only depends on the value of 64-bit h_1 .

I

I

NIST SP 800-90B	RECOMMENDATION FOR THE ENTROPY SOURCES	Deleted: (2 nd Draft)
A	USED FOR RANDOM BIT GENERATION	Formatted: Small caps
Appendix F—CBC-MAC S	specification	Formatted: Small caps
Appendix I — OBO-MAO O	pecification	
	proved block-cipher algorithm is one of the vetted conditioning	Deleted: A conditioning component may be based on the use of
	construction shall not be used for any other purpose than as the	
is used for the construction.	pmponent, as specified in Section <u>3.1.5.1.1</u> . The following notation	(Deleted: 3.1.5.1.1.
Let E(Key, input string) repr	esent the approved encryption algorithm, with a Key and an	
	s. The length of the <i>input_string</i> shall be an integer multiple of the	
	pher algorithm and shall always be the same length (i.e., variable	
length strings shall not be used	i as input).	
	the output block of the approved block cipher algorithm, and let w	
be the number of <i>n</i> -bit blocks i	n the <i>input_string</i> .	
Let <i>output_string</i> be the <i>n</i> -bit of	output of CBC-MAC.	
CBC-MAC:		
Input: bitstring Key, input		
Output: bitstring <i>output_si</i>	tring.	
Process:		
1. Let $s_0, s_1, \dots s_{w-1}$ be blocks; i.e., each s_i	e the sequence of blocks formed by dividing <i>input string</i> into <i>n</i> -bit consists of <i>n</i> bits.	
2. $V = 0$.		
3. For $i = 0$ to $w_{i} - 1$		Deleted: -
$V = \mathbf{E}(Key, V \oplus$		Formatted: Indent: First line: 0"
4. Output V as the CB	C-MAC output.	

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-90B

I

NIST SP 800-90B,

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

Appendix G—Different Strategies for Entropy Estimation

Each of the estimation methods presented in Section 6 follows one of two approaches to estimating min-entropy. The first approach is based on entropic statistics, first described for IID data in [HD12], and later applied to non-IID data [HD12]. The second approach is based on predictors, first described in [Kel15].

Entropic Statistics G.1

The entropic statistics presented in [HD12], each designed to compute a different statistic on the samples, provide information about the structure of the data: collision, compression, and Markov. While the estimators (except for the Markov) were originally designed for application to independent outputs, the tests have performed well when applied to data with dependencies.

The estimators assume that a probability distribution describes the output of a random noise source, but that the probability distribution is unknown. The goal of each estimator is to reveal information about the unknown distribution, based on a statistical measurement.

The collision and compression estimators in Section 6 each solve an equation for an unknown parameter, where the equation is different for each estimator. These equations come from the target statistic's expected value using a near-uniform distribution, which provides a lower bound for minentropy. A near-uniform distribution is an instance of a one-parameter family of probability distributions parameterized by p, P_p :

$$P_p(i) = \begin{cases} p, & \text{if } i = 0\\ \frac{1-p}{k-1}, & \text{otherwise} \end{cases}$$

where *k* is the number of states in the output space, and $p \ge \frac{1-p}{k-w}$ which is the case when $p \ge \frac{1}{k}$. In other words, one output state has the maximum probability, and the remaining output states are equally likely. For more information, see [HD12].

G.1.1 Approximation of F(1/z)

The function F(1/z), used by the collision estimate (Section 6.3.2), can be approximated by the following continued fraction:¹⁸

Deleted: (2 nd Draft)
Formatted: Small caps
Formatted: Small caps

Deleted: The most common value test estimates entropy by bounding the probability of the most-common output. In the IID case, the collision and compression estimators in Section 6.3 provide a lower bound on min-entropy by fitting the distribution to a near-uniform distribution, where one probability is highest, and the rest are all equal. Empirically, these estimators appear to be conservative for independent, but not necessarily identically distributed samples, as well. The final estimator proposed in [HD12] and specified in Section 6.3.3 constructs a first-order Markov model and estimates entropy from the most-probable sequence.

Deleted: collection,

Deleted: Given empirical evidence and the confidence level of the tests, their application to non-IID data will produce valid, although conservative, entropy estimates.

Deleted: ≤ Deleted:

Deleted:

Deleted:

¹⁸ Derived from Equation 8.9.2 at http://dlmf.nist.gov/8.9.

NIST SP 800-90B

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

-(Deleted: (2 nd Draft)
•(Formatted: Small caps
-(Formatted: Small caps

G.2 Predictors

Shannon first published the relationship between the entropy and predictability of a sequence in 1951 [Shan51]. Predictors construct models from previous observations, which are used to predict the next value in a sequence. The prediction-based estimation methods in this Recommendation work in a similar way, but attempt to find bounds on the min-entropy of integer sequences generated by an unknown process (rather than <u>the</u>*N*-gram entropy of English text, as in [Shan51]).

The predictor approach uses two metrics to produce an estimate. The first metric is based on the global performance of the predictor, called *accuracy* in machine-learning literature. Essentially, a predictor captures the proportion of guesses that were correct. This approximates how well one can expect a predictor to guess the next output from a noise source, based on the results over a long sequence of guesses. The second metric is based on the greatest number of correct predictions in a row, which is called the local <u>performance metric</u>. This metric is useful for detecting cases where a noise source falls into a highly predictable state for some time, but the predictor may not perform well on long sequences. The calculations for the local entropy estimate come from the probability theory of runs and recurrent events [Fel50]. For more information about min-entropy estimation using predictors, see [Kel15].

In order to make the predictor estimates lean toward a conservative underestimate of min-entropy, P_{global} is replaced by P'_{global} , the proportion corresponding to the 99th percentile of the number of correct predictions based on the observed number of correct predictions. Note that the order in which correct predictions occur does not influence the min-entropy estimate based on Pglobal. For example, a predictor could always be correct for the first half of the outputs in a data set, and always incorrect for the second half of the outputs. The min-entropy estimate of this sequence, based on Pglobal, is half the data length in bits. On the other hand, for another sequence, the predictor could have a 50 % chance of being correct for every sample in this sequence. The minentropy estimate of this second sequence, based on Pglobal, is the same as that of the first sequence. However, the typical successful prediction run lengths are very different for these two sequences. Therefore, the approach takes the local prediction performance into account in order to conservatively decrease the min-entropy estimate if the observed local prediction behavior is statistically significant, given the global prediction success rate. The predictor estimates accomplish this by basing the min-entropy estimate on max (P'_{global}, P_{local}), where P_{local} is the successful prediction proportion for which the observed longest run of correct predictions is the <u>99th percentile. This is effectively a one-tail hypothesis test that rejects P'_{global} in favor of P_{local} if</u> the observed longest run, given a success probability of P'_{global} , is beyond the 99th percentile.

Deleted: entropy estimate

NI	ST	SP	800	-90	в,
----	----	----	-----	-----	----

RECOMMENDATION FOR THE ENTROPY SOURCES USED FOR RANDOM BIT GENERATION

(Deleted: (2 nd Draft)
~~(Formatted: Small caps
\sim	Formatted: Small caps

The following table provides pre-calculated values for P_{local} for different r (length of the longest run of ones +1) values when the length of the input sequence is 1 000 000.

Table 3_P_{local} values for different r values when L=1 000 000.

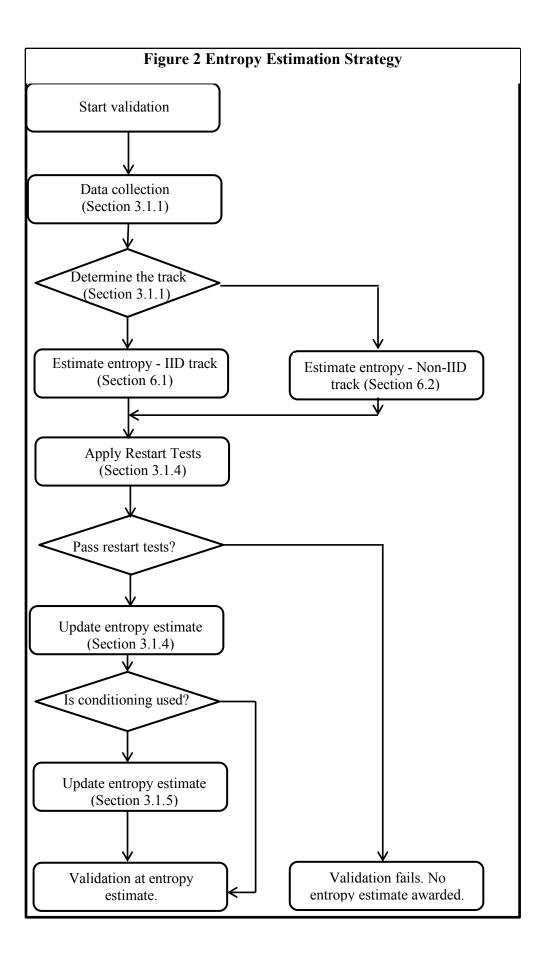
	D		D		D		р
<u><u>r</u></u>	P _{local}	<u>r</u>	P _{local}	<u>r</u>	P _{local}	<u>r</u>	P _{local}
<u>1</u>	0.0000	<u>36</u>	<u>0.6157</u>	<u>160</u>	<u>0.9045</u>	<u>370</u>	<u>0.9597</u>
<u>2</u>	0.0001	<u>37</u>	<u>0.6242</u>	<u>165</u>	<u>0.9074</u>	<u>380</u>	<u>0.9609</u>
<u>3</u>	<u>0.0022</u>	<u>38</u>	<u>0.6324</u>	<u>170</u>	<u>0.9101</u>	<u>390</u>	<u>0.9619</u>
<u>4</u>	<u>0.0100</u>	<u>39</u>	<u>0.6402</u>	<u>175</u>	<u>0.9127</u>	<u>400</u>	<u>0.9629</u>
<u>5</u>	0.0253	<u>40</u>	<u>0.6477</u>	<u>180</u>	<u>0.9152</u>	<u>410</u>	<u>0.9639</u>
<u>6</u>	<u>0.0468</u>	<u>41</u>	<u>0.6549</u>	<u>185</u>	<u>0.9175</u>	<u>420</u>	<u>0.9648</u>
<u>7</u>	<u>0.0728</u>	<u>42</u>	<u>0.6619</u>	<u>190</u>	<u>0.9198</u>	<u>430</u>	<u>0.9656</u>
<u>8</u>	<u>0.1014</u>	<u>43</u>	<u>0.6686</u>	<u>195</u>	<u>0.9219</u>	<u>440</u>	<u>0.9664</u>
<u>9</u>	<u>0.1313</u>	<u>44</u>	<u>0.6750</u>	<u>200</u>	<u>0.9239</u>	<u>450</u>	<u>0.9672</u>
<u>10</u>	<u>0.1614</u>	<u>45</u>	<u>0.6812</u>	<u>205</u>	<u>0.9258</u>	<u>460</u>	<u>0.9680</u>
<u>11</u>	<u>0.1911</u>	<u>46</u>	<u>0.6872</u>	<u>210</u>	<u>0.9276</u>	<u>470</u>	<u>0.9687</u>
<u>12</u>	0.2200	<u>47</u>	<u>0.6930</u>	<u>215</u>	<u>0.9293</u>	<u>480</u>	<u>0.9694</u>
<u>13</u>	0.2479	<u>48</u>	<u>0.6986</u>	<u>220</u>	<u>0.9309</u>	<u>490</u>	<u>0.9700</u>
<u>14</u>	0.2746	<u>49</u>	<u>0.7040</u>	<u>225</u>	<u>0.9325</u>	<u>500</u>	<u>0.9707</u>
<u>15</u>	0.3000	<u>55</u>	0.7092	<u>230</u>	<u>0.9340</u>	<u>550</u>	<u>0.9735</u>
<u>16</u>	0.3242	<u>60</u>	0.7328	<u>235</u>	<u>0.9355</u>	<u>600</u>	<u>0.9758</u>
17	0.3471	65	0.7531	240	0.9369	<u>650</u>	0.9778
<u>18</u>	0.3688	<u>70</u>	0.7705	245	0.9382	700	0.9795
<u>19</u>	0.3893	<u>75</u>	0.7858	<u>250</u>	<u>0.9395</u>	<u>750</u>	<u>0.9809</u>
20	0.4088	<u>80</u>	0.7992	255	0.9407	800	0.9822
21	0.4272	85	0.8111	260	0.9419	850	0.9833
22	0.4447	<u>90</u>	0.8217	<u>265</u>	0.9430	<u>900</u>	0.9843
23	0.4613	95	0.8312	270	0.9441	<u>950</u>	0.9852
24	0.4770	100	0.8398	275	0.9452	1000	0.9860
25	0.4919	105	0.8476	280	0.9462	1500	0.9909
26	0.5060	110	0.8547	285	0.9471	2000	0.9933
27	0.5195	115	0.8612	290	0.9481	2500	0.9947
28	0.5323	120	0.8671	295	0.9490	3000	0.9957
29	0.5445	125	0.8726	300	0.9499	4000	0.9968
30	0.5561	130	0.8776	310	0.9516	5000	0.9975
31	0.5672	135	0.8823	320	0.9531	10000	0.9988
32	0.5778	140	0.8867	330	0.9546		
33	0.5879	145	0.8907	340	0.9560		
34	0.5976	150	0.8945	350	0.9573		
35	0.6068	155	0.8980	360	0.9586		

Page ii: [1] Style Definition	Author	
Definition		
Demitton		
Page ii: [1] Style Definition	Author	
Definition	Aution	
Demitton		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Deministr		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		

Page ii: [1] Style Definition	Author	
Definition		
Demitton		
Page ii: [1] Style Definition	Author	
Definition	Aution	
Demitton		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Deministr		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		

Page ii: [1] Style Definition	Author	
Definition		
Demitton		
Page ii: [1] Style Definition	Author	
Definition	Aution	
Demitton		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Deministr		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		
Page ii: [1] Style Definition	Author	
Definition		

Pag	e ii: [1] Style Definition	Author	
De	finition		
Pag	e ii: [1] Style Definition	Author	
De	finition		
Pag	e ii: [1] Style Definition	Author	
De	finition		
Pag	e ii: [1] Style Definition	Author	
De	finition		
Pag	e ii: [1] Style Definition	Author	
De	finition		
Pag	e ii: [2] Deleted	Author	
			http://dx.
Pag	e ii: [2] Deleted	Author	
			http://dx.
Pag	e iii: [3] Deleted	Author	
1	Introduction		1
	<u>1.1</u> <u>Scope</u>		1
	<u>1.2</u> Symbols		2
	1.3 Organization		4
~			
<u>2</u>	General Discussion		4
ž			
2	2.1 Min-Entropy		4
2	2.1 Min-Entropy 2.2 The Entropy Source Mode		4
2	2.1Min-Entropy2.2The Entropy Source Mode2.2.1Noise Source	<u>əl</u>	4 5 5
2	2.1Min-Entropy2.2The Entropy Source Mode2.2.1Noise Source2.2.2Conditioning Competition	<u>əl</u>	
∠	2.1 Min-Entropy 2.2 The Entropy Source Mode 2.2.1 Noise Source 2.2.2 Conditioning Compe 2.2.3 Health Tests	<u>onent</u>	


 2.3.1
 GetEntropy: An Interface to the Entropy Source
 6

 2.3.2
 GetNoise: An Interface to the Noise Source
 7

<u>3</u>

	<u>3.1</u>	Validation Process	9
		3.1.1 Data Collection	9
		3.1.2 Determining the track: IID track vs. non-IID track	11
		3.1.3 Initial Entropy Estimate	12
		3.1.4 Restart Tests	12
		3.1.5 Entropy Estimation for Entropy Sources Using a	
		Component	
		3.1.6 Using Multiple Noise Sources	
	<u>3.2</u>	Requirements for Validation Testing	
		3.2.1 Requirements on the Entropy Source	
		3.2.2 Requirements on the Noise Source	
		3.2.3 Requirements on the Conditioning Component	19
		3.2.4 Requirements on Data Collection	20
<u>4</u>	<u>Heal</u>	<u>th Tests</u>	22
	<u>4.1</u>	Health Test Overview	
	<u>4.2</u>	Types of Health Tests	22
	<u>4.3</u>	Requirements for Health Tests	23
	<u>4.4</u>	Approved Continuous Health Tests	25
		4.4.1 Repetition Count Test	25
		4.4.2 Adaptive Proportion Test	26
	<u>4.5</u>	Vendor-Defined Alternatives to the Continuous Health Tests	27
	<u>4.6</u>	Alternative Health Test Criteria	28
<u>5</u>	<u>Test</u>	ing the IID Assumption	29
	<u>5.1</u>	Permutation Testing	29
		5.1.1 Excursion Test Statistic	31
		5.1.2 Number of Directional Runs	31
		5.1.3 Length of Directional Runs	31
		5.1.4 Number of Increases and Decreases	32
		5.1.5 Number of Runs Based on the Median	32
		5.1.6 Length of Runs Based on Median	33
		5.1.7 Average Collision Test Statistic	33
		5.1.8 Maximum Collision Test Statistic	34
		5.1.9 Periodicity Test Statistic	34

		<u>5.1.10</u>	<u>Covariance Test Statistic</u>	35		
		<u>5.1.11</u>	Compression Test Statistics	35		
	<u>5.2</u>	<u>Additi</u>	onal Chi-square Statistical Tests	35		
		<u>5.2.1</u>	Testing Independence for Non-Binary Data	35		
		<u>5.2.2</u>	Testing Goodness-of-fit for non-binary data	37		
		<u>5.2.3</u>	Testing Independence for Binary Data	37		
		<u>5.2.4</u>	Testing Goodness-of-fit for Binary Data			
		<u>5.2.5</u>	Length of the Longest Repeated Substring Test			
<u>6</u>	<u>Estir</u>		Min-Entropy			
	<u>6.1</u>	<u>IID Tr</u>	ack: Entropy Estimation for IID Data	40		
	<u>6.2</u>	<u>Non-I</u>	ID Track: Entropy Estimation for Non-IID Data	40		
	<u>6.3</u>	Estimators				
		<u>6.3.1</u>	The Most Common Value Estimate	41		
		<u>6.3.2</u>	The Collision Estimate	42		
		<u>6.3.3</u>	The Markov Estimate	43		
		<u>6.3.4</u>	The Compression Estimate	45		
		<u>6.3.5</u>	<u>t-Tuple Estimate</u>	47		
		<u>6.3.6</u>	Longest Repeated Substring (LRS) Estimate	48		
		<u>6.3.7</u>	Multi Most Common in Window Prediction Estimate	49		
		<u>6.3.8</u>	The Lag Prediction Estimate	51		
		<u>6.3.9</u>	The MultiMMC Prediction Estimate	53		
		<u>6.3.10</u>	<u>The LZ78Y Prediction Estimate</u>	56		
	<u>6.4</u>	<u>Redu</u>	cing the Sample Space	59		

Author
Author

1.2

Page 25: [7] [Deleted		Author			
10	0.1	 	1 1.1	11 .1	.1 0.1	• . •

If any of the **approved** continuous health tests are used by the entropy source, the false positive probability for these tests **shall** be set to at least 2⁻⁵⁰. The submitter **shall** specify and document a false positive probability suitable for their application.

The continuous tests **may** include additional tests defined by the vendor.

The entropy source's startup tests **shall** run the continuous health tests over at least 4096 consecutive samples.

The samples subjected to startup testing **may** be released for operational use after the startup tests have been passed.

The startup tests **may** include other tests defined by the vendor.

The entropy source shall support on-demand testing.

Page 25: [8] Moved to page 24 (Move #9) Author

The entropy source may support on-demand testing by restarting the entropy source and rerunning the startup tests, or by rerunning the startup tests without restarting the entropy source.

1.3

Page 25: [8] Moved to page 24 (Move #9) Auth

The entropy source may support on-demand testing by restarting the entropy source and rerunning the startup tests, or by rerunning the startup tests without restarting the entropy source.

1.4

Page 25: [9] Deleted	Author	

The entropy source's on-demand testing **may** include other testing.

Page 25: [10] Deleted	Author	
allowed		
Press 25. [40] Press d		
Page 25: [10] Deleted	Author	
allowed		
Page 25: [11] Deleted	Author	
,		
Page 25: [11] Deleted	Author	
,		
Page 25: [11] Deleted	Author	
,		
Page 25: [12] Deleted	Author	
Α		
Page 25: [12] Deleted	Author	
A		
Page 25: [12] Deleted	Author	
A	Addio	
1		
Page 25: [12] Deleted	Author	
Α		
Page 25: [12] Deleted	Author	
Α		
Page 25: [12] Deleted	Author	
A		
Page 25: [12] Deleted	Author	
Α		
Page 25: [12] Deleted	Author	
A		

Page 25: [12] Deleted	Author
A	
Page 25: [12] Deleted	Author
A	
Page 25: [13] Deleted	Author
repetition count test	
Page 25: [13] Deleted	Author
repetition count test	
Page 25: [13] Deleted	Author
repetition count test	
Page 25: [14] Deleted	Author
-	
Page 25: [14] Deleted	Author
-	
Page 25: [14] Deleted	Author
-	
Page 25: [14] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 25: [15] Deleted	Author
-	
Page 26: [16] Formatted	Author

List Paragraph, Indent: Left: 0.26", Space After: 0 pt, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0", Tab stops: 0.5", Left + Not at 0.79"

Page 26: [17] Deleted Author

Running the repetition count test requires enough memory to store:

- A: the most recently observed sample value,
- *B*: the number of consecutive times that the sample A has been observed, and
- *C*: the cutoff value.

Page 26: [18] Formatted

Space After: 0 pt, Widow/Orphan control, Hyphenate

Page 26: [19] Deleted

, which is determined by the false positive probability α and the assessed entropy/sample of the source, H

Author

Author

Author

Author

Page iii: [20] Formatted

Small caps

Page iii: [21] Formatted	
--------------------------	--

Small caps

Page 27: [22] Deleted

Let *A* be the current sample value.

Initialize the counter

Page 27: [23] Formatted

Author Indent: Left: 0.39", Hanging: 0.2", Space After: 0 pt, Tab stops: 0.64", List tab + Not at 0.25"

Author

Author

Author

Page 27: [24] Formatted

Font: (Intl) Times New Roman

Page 27: [25] Formatted

Indent: Left: 0.89", Space After: 0 pt

Page 27: [26] Formatted

Font: Not Italic, (Intl) Times New Roman

Page 27: [27] Formatted

Author

Font: (Intl) Times New Roman

Page 27: [28] Formatted

Font: (Intl) Times New Roman

Page 27: [29] Formatted

Font: (Intl) Times New Roman

Page 27: [30] Formatted

Indent: Left: 0.89", Space After: 0 pt, No bullets or numbering

Page 27: [31] Formatted

Font: (Intl) Times New Roman

Page 27: [31] Formatted

Font: (Intl) Times New Roman

Page 27: [32] Formatted

Font: (Intl) Times New Roman

Page 27: [33] Formatted

Indent: Left: 0.39", Hanging: 0.2", Space After: 0 pt, Tab stops: 0.64", List tab + Not at 0.25"

Author

Page 27: [34] Deleted

Running the test requires enough memory to store

- the sample value currently being counted, A:
- the number of times that A has been seen in the current window, *B*:
- W: the window size,
- the counter for the number of samples examined in the current window, and i:
- *C*: the cutoff value at with the test fails.

Page 27: [35] Deleted	Author	
than C		
Page 27: [35] Deleted	Author	
than C		
Page 27: [36] Deleted	Author	
	>	
Page 27: [36] Deleted	Author	
	>	
Page 27: [37] Deleted	Author	

Author

Author

Author

Author

Author

Author

where $p = 2^{-H}$. The following tables give cutoff values for various min-entropy estimates per sample and window sizes with $\alpha = 2^{-40}$. For example, the cutoff value for binary sources with H=0.4 is 867, and the probability of detecting a loss of 50% of the entropy using 1024 samples is 0.86, and the probability of detecting the same failure is almost 1 during the startup tests that use at least 4096 samples. Note that the noise source failures whose probability of detection is listed in the tables are of a very specific form – some value becomes much more common than it should be, given the source's entropy estimate, so that the maximum probability p_{max} is much higher, and thus $h = -\log_2(p_{max})$ is much lower than claimed by the noise source's entropy estimate.

Page 27: [38] Deleted	Au	thor			
proportion test on binary	data for var	ious entropy/	sample leve	els with <i>W</i> =	1024
Page 27: [39] Merged Cells	Au	thor			
Merged Cells					
Page 27: [40] Formatted Table	Au	thor			
Formatted Table					
Page 27: [41] Formatted	Au	thor			
Font: Not Italic, (Intl) Times New	Roman				
Page 27: [42] Merged Cells	Au	thor		0/1/0	0 4:00:00 PM
Merged Cells					
Page 27: [43] Formatted	Au	thor			
Font: (Intl) Times New Roman					
Page 27: [44] Formatted	Au	thor			
Font: (Intl) Times New Roman					
Page 27: [45] Formatted	Au	thor			
Normal, Left, Widow/Orphan contr	rol				
				0 10 100	42.00.00.004
Page 27: [46] Inserted Cells	Au	thor		0/3/00	12:00:00 AM
Inserted Cells					
Page 27: [47] Deleted	Au	thor			
	50% ent	ropy loss	33% ent	ropy loss	
	in one window	in startup	in one window	in startup	

Centered Author Font: Times New Roman, 12 pt Page 27: [50] Formatted Table Page 27: [51] Formatted Table Author Fornt: Times New Roman, 12 pt Page 27: [52] Deleted Cells Page 27: [52] Deleted Cells Author Deleted Cells Author Page 27: [53] Pormatted Author Page 27: [55] Formatted Author Font color: Black Page 27: [57] Formatted Page 27: [58] Deleted Cells Author Font color: Black Page 27: [58] Deleted Cells Page 27: [58] Deleted Cells Author Deleted Cells Page 27: [59] Formatted Page 27: [59] Formatted Author Font color: Black Page 27: [59] Formatted Page 27: [59] Formatted Author Deleted Cells Page 27: [59] Formatted	Page 27: [48] Formatted	Author	
Font: Times New Roman, 12 pt Page 27: [50] Formatted Table Formatted Table Page 27: [51] Formatted Page 27: [52] Deleted Cells Author Deleted Cells Page 27: [53] Deleted Cells Author O/1/00 4:00:00 F Deleted Cells Page 27: [53] Deleted Cells Author O/1/00 4:00:00 F Deleted Cells Page 27: [53] Deleted Cells Author Page 27: [55] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Author Centered Page 27: [55] Formatted Author Font color: Black Page 27: [53] Deleted Cells Author Font color: Black Page 27: [53] Deleted Cells Author Deleted Cells Page 27: [53] Pormatted Author Centered Page 27: [50] Formatted Author Centered Page 27: [60] Formatted Author <td></td> <td></td> <td></td>			
Font: Times New Roman, 12 pt Page 27: [50] Formatted Table Formatted Table Page 27: [51] Formatted Page 27: [52] Deleted Cells Author Deleted Cells Page 27: [53] Deleted Cells Author 0/1/00 4:00:00 I Deleted Cells Page 27: [53] Deleted Cells Author O/1/00 4:00:00 I Deleted Cells Page 27: [53] Deleted Cells Author Page 27: [55] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Author Centered Page 27: [55] Formatted Author Font color: Black Page 27: [53] Deleted Cells Author Font color: Black Page 27: [53] Deleted Cells Author Deleted Cells Page 27: [53] Pormatted Author Deleted Cells Page 27: [53] Pormatted Author Centered Page 27: [50] Formatted Author			
Page 27: [50] Formatted Table Author Formatted Table Author Page 27: [51] Formatted Author Font: Times New Roman, 12 pt Page 27: [52] Deleted Cells Page 27: [52] Deleted Cells Author Deleted Cells Author Page 27: [53] Deleted Cells Author O/1/00 4:00:00 I Deleted Cells Page 27: [53] Deleted Cells Author O/1/00 4:00:00 I Deleted Cells Page 27: [54] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Page 27: [56] Formatted Author Font color: Black Page 27: [56] Formatted Page 27: [58] Deleted Cells Author Font color: Black Page 27: [58] Deleted Cells Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Page 27: [59] Formatted Page 27: [50] Formatted Author Centered Page 27: [50] Formatted Page 27: [60] Formatted Author Font: Times New Roman, 12 pt Author	Page 27: [49] Formatted	Author	
Formatted Table Page 27: [51] Formatted Author Font: Times New Roman, 12 pt Page 27: [52] Deleted Cells Author Deleted Cells Author Page 27: [53] Deleted Cells Author Deleted Cells Author Page 27: [53] Deleted Cells Author Page 27: [55] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Page 27: [55] Formatted Author Centered Author Page 27: [55] Formatted Author Font color: Black Author Page 27: [55] Formatted Author Page 27: [55] Formatted Author Font color: Black Page 27: [55] Formatted Page 27: [55] Formatted Author Deleted Cells Author Page 27: [55] Formatted Author Centered Page 27: [55] Formatted Page 27: [55] Formatted Author Page 27: [50] Formatted Author Centered Page 27: [50] Formatted Page 27: [50] Formatted Author Centered Page 27: [50] Formatted	Font: Times New Roman, 12 pt		
Page 27: [51] Formatted Author Font: Times New Roman, 12 pt Author Page 27: [52] Deleted Cells Author Page 27: [53] Deleted Cells Author Page 27: [54] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Page 27: [55] Formatted Author Centered Author Page 27: [56] Formatted Author Font color: Black Author Page 27: [57] Formatted Author Font color: Black Page 27: [58] Deleted Cells Page 27: [58] Deleted Cells Author Page 27: [59] Formatted Author Centered Page 27: [59] Formatted Page 27: [59] Formatted Author Page 27: [59] Formatted Author Page 27: [59] Formatted Author Centered Page 27: [50] Formatted Page 27: [50] Formatted Author	Page 27: [50] Formatted Table	Author	
Font: Times New Roman, 12 pt Page 27: [52] Deleted Cells Page 27: [53] Deleted Cells Page 27: [53] Deleted Cells Page 27: [54] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Author Centered Page 27: [56] Formatted Author Font color: Black Page 27: [58] Deleted Cells Author Page 27: [58] Deleted Cells Author Page 27: [59] Formatted Author Deleted Cells Page 27: [59] Formatted Author Deleted Cells Page 27: [59] Formatted Author Deleted Cells Page 27: [50] Formatted Author Centered Page 27: [50] Formatted Author Centered	Formatted Table		
Page 27: [52] Deleted CellsAuthorDeleted CellsAuthorPage 27: [53] Deleted CellsAuthorDeleted CellsAuthorPage 27: [54] FormattedAuthorFont: Times New Roman, 12 ptPage 27: [55] FormattedPage 27: [56] FormattedAuthorCenteredAuthorPage 27: [56] FormattedAuthorFont color: BlackAuthorPage 27: [58] Deleted CellsAuthorPage 27: [58] Deleted CellsAuthorPage 27: [58] Deleted CellsAuthorPage 27: [59] FormattedAuthorCenteredCenteredPage 27: [58] Deleted CellsAuthorPage 27: [59] FormattedAuthorCenteredCenteredPage 27: [59] FormattedAuthorDeleted CellsAuthorPage 27: [59] FormattedAuthorCenteredCenteredPage 27: [59] FormattedAuthorCenteredCenteredPage 27: [50] FormattedAuthorCenteredCenteredPage 27: [50] FormattedAuthorCenteredCenteredPage 27: [50] FormattedAuthorFont: Times New Roman, 12 ptCentered	Page 27: [51] Formatted	Author	
Deleted CellsAuthor0/1/00 4:00:00 FPage 27: [53] Deleted CellsAuthorPage 27: [54] FormattedAuthorFont: Times New Roman, 12 ptAuthorPage 27: [55] FormattedAuthorCenteredAuthorPage 27: [56] FormattedAuthorFont: color: BlackAuthorPage 27: [57] FormattedAuthorFont color: BlackAuthorPage 27: [58] Deleted CellsAuthorPage 27: [59] FormattedAuthorPage 27: [59] FormattedAuthorCenteredImage 27: [50] FormattedPage 27: [50] FormattedAuthorCenteredImage 27: [50] FormattedPage 27: [50] FormattedAuthorFont: Times New Roman, 12 ptImage 27: [50] Formatted	Font: Times New Roman, 12 pt		
Page 27: [53] Deleted CellsAuthor0/1/00 4:00:00 FDeleted CellsAuthorFont: Times New Roman, 12 ptAuthorPage 27: [55] FormattedAuthorCenteredAuthorPage 27: [56] FormattedAuthorFont color: BlackAuthorPage 27: [57] FormattedAuthorFont color: BlackAuthorPage 27: [58] Deleted CellsAuthorPage 27: [58] Deleted CellsAuthorPage 27: [58] Deleted CellsAuthorPage 27: [59] FormattedAuthorPage 27: [59] FormattedAuthorCenteredImage: CenteredPage 27: [50] FormattedAuthorCenteredImage: CenteredPage 27: [50] FormattedAuthorFont: Times New Roman, 12 ptImage: Centered	Page 27: [52] Deleted Cells	Author	
Deleted Cells Page 27: [54] Formatted Author Font: Times New Roman, 12 pt Page 27: [55] Formatted Author Centered Page 27: [56] Formatted Author Font color: Black Page 27: [57] Formatted Author Font color: Black Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Page 27: [59] Formatted Page 27: [59] Formatted Author Deleted Cells Author Page 27: [59] Formatted Author Centered Page 27: [60] Formatted Page 27: [60] Formatted Author	Deleted Cells		
Page 27: [54] Formatted Author Font: Times New Roman, 12 pt Author Page 27: [55] Formatted Author Centered Author Page 27: [56] Formatted Author Font color: Black Author Page 27: [57] Formatted Author Font color: Black Author Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author	Page 27: [53] Deleted Cells	Author	0/1/00 4:00:00 PM
Font: Times New Roman, 12 pt Page 27: [55] Formatted Author Centered Author Page 27: [56] Formatted Author Font color: Black Author Page 27: [57] Formatted Author Font color: Black Author Page 27: [57] Formatted Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author Page 27: [59] Formatted Author Centered Author Page 27: [50] Formatted Author Centered Author Page 27: [50] Formatted Author Centered Font: Times New Roman, 12 pt	Deleted Cells		
Page 27: [55] Formatted Author Centered Author Page 27: [56] Formatted Author Font color: Black Author Page 27: [57] Formatted Author Font color: Black Author Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author Font: Times New Roman, 12 pt Image 201	Page 27: [54] Formatted	Author	
Centered Page 27: [56] Formatted Author Font color: Black Page 27: [57] Formatted Author Font color: Black Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author Page 27: [59] Formatted Author Centered Author Font: Times New Roman, 12 pt Line Kerner	Font: Times New Roman, 12 pt		
Page 27: [56] FormattedAuthorFont color: BlackAuthorPage 27: [57] FormattedAuthorFont color: BlackAuthorPage 27: [58] Deleted CellsAuthorDeleted CellsAuthorPage 27: [59] FormattedAuthorCenteredAuthorPage 27: [60] FormattedAuthor	Page 27: [55] Formatted	Author	
Font color: BlackAuthorPage 27: [57] FormattedAuthorFont color: BlackAuthorPage 27: [58] Deleted CellsAuthorDeleted CellsAuthorPage 27: [59] FormattedAuthorCenteredAuthorPage 27: [60] FormattedAuthorFont: Times New Roman, 12 ptImage 2000 (Image 2000) (Image	Centered		
Page 27: [57] Formatted Author Font color: Black Author Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author Page 27: [60] Formatted Author Font: Times New Roman, 12 pt Image: Color Solution of the second of	Page 27: [56] Formatted	Author	
Font color: Black Page 27: [58] Deleted Cells Deleted Cells Page 27: [59] Formatted Author Centered Page 27: [60] Formatted Author Font: Times New Roman, 12 pt	Font color: Black		
Page 27: [58] Deleted Cells Author Deleted Cells Author Page 27: [59] Formatted Author Centered Author Page 27: [60] Formatted Author Font: Times New Roman, 12 pt Image: Center Cen	Page 27: [57] Formatted	Author	
Deleted Cells Page 27: [59] Formatted Author Centered Author Page 27: [60] Formatted Author Font: Times New Roman, 12 pt Image: Center Cent	Font color: Black		
Page 27: [59] Formatted Author Centered Author Page 27: [60] Formatted Author Font: Times New Roman, 12 pt Image: Center of the second s	Page 27: [58] Deleted Cells	Author	
Centered Page 27: [60] Formatted Author Font: Times New Roman, 12 pt	Deleted Cells		
Page 27: [60] FormattedAuthorFont: Times New Roman, 12 pt	Page 27: [59] Formatted	Author	
Font: Times New Roman, 12 pt	Centered		
	Page 27: [60] Formatted	Author	
Dago 37: [61] Formatted	Font: Times New Roman, 12 pt		
raye 27: [01] ronnalleu Autnor	Page 27: [61] Formatted	Author	

Font: Times New Roman, 12 pt

Page 27: [62] Formatted	Author	
Centered		
Page 27: [63] Formatted	Author	
Font color: Black		
Page 27: [64] Formatted	Author	
Font color: Black		
Page 27: [65] Deleted Cells	Author	0/1/00 4:00:00 PM
Deleted Cells		
Page 27: [66] Formatted	Author	
Font: Times New Roman, 12 pt		
Page 27: [67] Formatted	Author	
Centered		
Page 27: [68] Formatted	Author	
Font color: Black		
Page 27: [69] Formatted	Author	
Font color: Black		
Page 27: [70] Formatted	Author	
Not Highlight		
Page 27: [71] Formatted	Author	
Font: Times New Roman, 12 pt	Autio	
Tone. Thirds from Roman, 12 pt		
Page 27: [72] Formatted	Author	
Centered		
Page 27: [73] Deleted	Author	

Table 3 Adaptive proportion test on non-binary data for various entropy/sample levelswith W=512

		Probabilit	y of detectin	g noise sour	ce failure
Н	Cutoff	50% entr	opy loss	33% entr	ropy loss
11	value	in one window	in startup	in one window	in startup
0.2	491	0.25	0.69	0	0.0
0.5	430	0.43	0.99	0	0.02

1	335	0.70	≈1	0.7	0.44
2	200	0.50	≈1	0.23	0.88
3	122	0.35	0.97	0.18	0.79
4	77	0.25	0.90	0.10	0.57
5	50	0.18	0.79	0.5	0.35
6	34	0.12	0.66	0.2	0.16
7	25	0.9	0.52	0.1	0.04
8	18	0.6	0.40	0	0.02

Vendor

Page 27: [74] Deleted	Author	
,(-		
Page 27: [74] Deleted	Author	
,(-		
Page iii: [75] Formatted	Author	
Small caps		
Page iii: [76] Formatted	Author	
Small caps		
Page 36: [77] Deleted	Author	
L	(
Page 36: [77] Deleted	Author	
Page 50. [77] Deleted		
2.	(
Page 36: [78] Deleted	Author	
5		
3.		
Page 36: [78] Deleted	Author	
5		
4.		
Page 36: [78] Deleted	Author	
5		
5.		
Page 36: [79] Formatted	Author	
Font: Italic, Not Expanded by / C	ondensed by	

Author

Page 36: [79] FormattedFont: Italic, Not Expanded by / Condensed by

Page 36: [80] Deleted

), $1 \le j \le L-1$, count the number of observed values for each

Page 36: [80] Deleted

), $1 \le j \le L-1$, count the number of observed values for each

Page 36: [81] Formatted

Font: Not Italic

Page 36: [82] Formatted

Font: Not Italic

Page 36: [83] FormattedAuthorOutline numbered + Level: 2 + Numbering Style: a, b, c, ... + Start at: 1 + Alignment: Left +
Aligned at: 0.25" + Indent at: 0.55"

Author

Page 36: [84] Change

Formatted Bullets and Numbering

Page 36: [85] Formatted

Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Author

Page 36: [86] Deleted	Author	
sample space		
Page 36: [86] Deleted	Author	
sample space		
Page 36: [86] Deleted	Author	
sample space		
Page 36: [87] Formatted	Author	
Space After: 4 pt		
Page 36: [88] Formatted Table	Author	
Formatted Table		
Page 36: [89] Formatted	Author	
Space After: 4 pt		
Page 36: [90] Formatted	Author	
Space After: 4 pt		

Author

Author

Author

Page 36: [91] Formatted

Left, Space After: 4 pt

Page 36: [92] Formatted Author

Author

Space After: 4 pt

Page 36: [93] Formatted

Author

Left, Space After: 4 pt

Page 36: [94] Deleted		Author	
	2	(3,1)	7.98
	32		8.613

Page 36: [95] Formatted	Author	
Left Space After: 1 nt		

Left, Space After: 4 pt

Page 36: [96] Formatted Author

Space After: 4 pt

Page 36: [97] Formatted	Author

Left, Space After: 4 pt

Page 36: [98] Deleted		Autho	r
	4	(2,1)	8.61
	53	(2,1), (3,3)	14.4411.53

Page 36: [99] Formatted	Author	
Left, Space After: 4 pt		

Page 36: [100] Formatted	Author

Space After: 4 pt

Page 36: [101] Formatted	Author

Left, Space After: 4 pt

Page 36: [102] Formatted Author

Left, Space After: 4 pt

Page 36: [103] Formatted

Space After: 4 pt

Dage 26: [104] Fermetted	Author	
Page 36: [104] Formatted	Author	
Left, Space After: 4 pt		
Page 36: [105] Formatted	Author	
Left, Space After: 4 pt		
Page 36: [106] Formatted	Author	
Space After: 4 pt		
Page 36: [107] Formatted	Author	
Left, Space After: 4 pt		
Page 36: [108] Formatted	Author	
Left, Space After: 4 pt		
Page 36: [109] Formatted	Author	
Space After: 4 pt		
Page 36: [110] Formatted	Author	
Left, Space After: 4 pt		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
15, 7, 8, 8		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
, 2, 0, 0		
Page 36: [111] Deleted	Author	
13, 9, 8, 8		
Page 43: [112] Deleted	Author	

The key component in estimating the entropy of a Markov process is the ability to accurately estimate the transition matrix probabilities of the Markov process. The main difficulty in making

these estimates is the large data requirement necessary to resolve the dependencies. In particular, low-probability transitions may not occur often in a "small" dataset; the more data provided, the easier it becomes to make accurate estimates of transition probabilities. This method, however, avoids large data requirements by overestimating the low-probability transitions; as a consequence, an underestimate of min-entropy is obtained with less data.

The data requirement for this estimation method depends on the number of output samples k (i.e., the alphabet size); the largest k accommodated by this test is 2⁶. An alphabet size greater than 2⁶ cannot be accommodated, since an unreasonable amount of data would be required to accurately estimate the matrix of transition probabilities – far more than is specified in Section 3.1.1¹. For 16-bit samples, for instance, a transition matrix of size $2^{16} \times 2^{16}$, containing 2^{32} sample entries, would have to be approximated, and the data requirement for this would be impractical.

As an alternative for datasets with a number of samples greater than 64, the method in Section 6.4 for mapping noise source outputs (based on a ranking of the bits in the output) **shall** be implemented. This will reduce the data requirement to a more feasible quantity.

Page 43: [113] Deleted	Author

Any values for which these probabilities cannot be determined empirically are overestimated to guarantee that the eventual min-entropy estimate is a lower bound.

Page 43: [114] Deleted Author

The following algorithm uses output values as list indices. If the output set does not consist of consecutive values, then the values are adjusted before this algorithm is applied. This can be done without altering entropy estimates, as the data is categorical. For example, if the output set is $\{0, 1, 4\}$, and the observed sequence is (0, 0, 4, 1, 0, 4, 0, 1), 0 can stay the same, 1, can stay the same, but 4 must be changed to 2. The new set is $\{0, 1, 2\}$, and the new sequence is (0, 0, 2, 1, 0, 2, 0, 1).

Page 43: [115] Deleted	Author	
Define the confidence l	level to be $\alpha = min(0.99^{k^2}, 0.99^d)$, where	d = 128 is the assumed
length of the chain.		

Page 43: [116] Formatted

List Paragraph, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Tab after: 0.39" + Indent at: 0"

Author

Page 43: [117] Deleted

¹ This statement assumes that the output space is defined such that it contains all 2^6 (or more) possible outputs; if, however, the output space is defined to have 2^6 or less elements, regardless of the sample size, the test can accurately estimate the transition probabilities with the amount of data specified in Section 3.1.1.

$$P_i = \min\left\{1, \frac{o_i}{L} + \varepsilon\right\},\,$$

where o_i denotes the number of times that value x_i has occurred in S, and ε is defined by:

$$\varepsilon = \sqrt{\frac{\log_2\left(\frac{1}{1-\alpha}\right)}{2L}}.$$

Let $o_{s_L} = o_{s_L} - 1$. This step removes one from the count of the last symbol of the sequence, which is necessary to compute sample proportions in the next step.

Page 44: [118] Deleted	Αι	ıthor			
	(1	if	$o_i = 0$	
	$T_{i,j} = \begin{cases} \min \left\{ \min \left\{ -\frac{1}{2} \right\} \right\} \end{cases}$	$\left\{1, \frac{o_{i,j}}{o_i} + \varepsilon_i\right\}$		otherwise,	

and $o_{i,j}$ is the number of transitions from state x_i to state x_j observed in the sample, and ε_i is defined to be

$$\varepsilon_i = \sqrt{\frac{\log_2\left(\frac{1}{1-\alpha}\right)}{2o_i}}$$

Using the bounding matrix T, find

Page 44: [119] Formatted

List Paragraph, Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Tab after: 0.39" + Indent at: 0"

Author

Author

Page 44: [120] Deleted

, using a dynamic programming algorithm as follows: For *j* from 1 to d - 1:

Let *h*

Page 44: [121] Deleted

Author

length k.

Find the highest probability for a sequence of length j+1 ending

Page 44: [122] Deleted	Author	
	each sample value. For <i>c</i> from 1 to <i>k</i> :	
	Let P' be a list of length k .	
	For <i>i</i> from 1 to k :	
	$P_i' = P_i \times T_{i,c}$	

 $h_{c} = \max_{i=1..k} (P'_{i})$ Store the highest probability for a sequence of length *j*+1 ending in each value in *P*. For all *i* \in {1,..., *k*}, set $P_{i} = h_{i}$. $\hat{p}_{max} = \max_{i=1..k} (P_{i})$

Page 44: [123] Deleted	Author
$\alpha = \min(0.99^9, 0.99^d) =$	0.2762. After step 2, $\varepsilon = 0.0877$, $P_1 =$

Page 44: [124] Deleted

Page 44: [125] Deleted		Author		
2	0.6641	0.4974	0.3308	

After step 5a, the loop iteration for j=1 completes, $P_1 = 0.2480 P_2 = 0.3390$, and $P_3 = 0.2444$. This represents the most probable sequence of length two ending in $x_1=0$, $x_2=1$, and $x_3=2$,

Page iii: [126] Formatted	Author	
Small caps		
I		
Page iii: [127] Formatted	Author	
Small caps		
Page 52: [128] Formatted	Author	
Font: Not Italic		
Page 52: [129] Formatted	Author	
Centered		
Page 52: [130] Formatted Table	Author	
Formatted Table		
Page 52: [131] Deleted Cells	Author	
Deleted Cells		
Dana 52: [122] Formattad	Author	
Page 52: [132] Formatted	Author	
Centered		
Page 52: [133] Formatted	Author	
Centered	Aution	
Centered		
Page 52: [134] Formatted	Author	
Centered		
Contereu		
Page 52: [135] Formatted	Author	
Centered		
Page 52: [136] Formatted	Author	
Centered		
Page 52: [137] Formatted	Author	

Centered

Page 52: [138] Formatted	Author	
Centered	Autio	
Centered		
Page 52: [139] Formatted	Author	
Centered		
Page 52: [140] Formatted	Author	
Centered		
Page 52: [141] Formatted	Author	
Centered		
Page 52: [142] Formatted	Author	
Centered		
Page 52: [143] Formatted	Author	
Centered		
Page 52: [144] Deleted	Author	
	(0, 0,	
Page 52: [144] Deleted	Author	
	(0, 0,	
Page 52: [145] Deleted Cells	Author	
Deleted Cells		
Page 52: [146] Formatted	Author	
Centered		
Page 52: [147] Formatted	Author	
Centered		
Page 52: [148] Deleted	Author	
	(0, 1,	
Page 52: [148] Deleted	Author	
	(0, 1,	
	(*, *,	
Page 52: [149] Deleted Cells	Author	

Deleted Cells

	A	
Page 52: [150] Formatted	Author	
Centered		
	•••	
Page 52: [151] Formatted	Author	
Centered		
Page 52: [152] Deleted	Author	
	(0, 2,	
Page 52: [152] Deleted	Author	
1 uge 52. [152] Beleted	(0, 2,	
	(0, 2,	
Page 52: [153] Deleted Cells	Author	
Deleted Cells		
Page 52: [154] Formatted	Author	
Centered		
Page 52: [155] Deleted Cells	Author	
Deleted Cells		
Page 52: [156] Formatted	Author	
Centered		
Page 65: [157] Deleted	Author	
Random	A non-deterministic process (or data produced by such a process) whose output values follow some probability distribution. The term is sometimes (mis)used to imply that the probability distribution is uniform, but no uniformity assumption is made in this Recommendation.	
Page 66: [158] Deleted	Author	
Sample size	The number of possible distinct values that a sample can have. May also be called <i>alphabet size</i> .	
Page 66: [159] Deleted	Author	
Seed	A bitstring that is used as input to (initialize) an algorithm. In this Recommendation, the algorithm using a seed is a DRBG. The	

entropy provided by the seed must be sufficient to support the intended security strength of the DRBG.

Page 72: [160] Deleted	Author
Post-processing Functions	

This section provides the details of the allowed post-processing functions for a noise source.

Von Neumann's method: This method produces independent unbiased random bits for a source that generates independent biased output bits. This method divides the sequence into pairs and applies the following mapping:

input	output
00	discard
01	1
10	0
11	discard

For a source that produces independent biased random bits $(s_1, s_2,...)$, with $Pr(s_i = 0) = p$, and $p \neq \frac{1}{2}$, the method extracts approximately np(1-p) unbiased bits from *n* biased bits. Independent of the value of *p*, the method throws away a pair of bits at least half of the time. It should be noted that the bias in the correlated sources might increase after applying the technique.

Linear filtering method: This method divides the sequence into non-overlapping blocks of *w* bits and applies a linear function to each block. Mathematically, the output of the *j*th block is calculated as $f(s_{jw+1}, ..., s_{(j+1)w}) = c_1 s_{jw+1} + ... + c_w s_{(j+1)w}$, where the c_i values are predetermined binary constants. A typical value of *w* may be between 16 and 64; this Recommendation does not put a restriction on the selection of the block size *w*.

Length of runs method: This method outputs the length of the runs in $(s_1, s_2,...)$, where the s_i 's are bits.